
1

CBM Geometry Database

Userôs Guide

 E.P. Akishina 1, E.A. Alexandrov 1, I.N. Alexandrov 1, V. Friese2, I.A. Filozova 1, V.V. Ivanov 1, 3

1 LIT JINR, Dubna, Russia
2 GSI, Darmstadt, Germany

3 MEPhI, Moscow, Russia

DRAFT - 16/07/18

Table of contents
CBM Geometry Database .. 1
Userôs Guide .. 1
1. Introduction ... 1

2. Functionality of the User role .. 2
2.1. Description of the User API ... 2
2.1.1. List of available setups ... 3

2.1.2. Load setup into CBM ROOT framework ... 3

2.1.3. Load setup into CBM ROOT environment by module Id .. 3
2.1.4. Download setup or download setup subset to local directory by module name 4
2.1.5. Download setup or download setup subset to local directory by module identifier 5

2.1.6. Load setup to CBM ROOT environment using shifts .. 5
2.1.7. Load setup to CBM ROOT environment from central data base 6

2.2. User GUI description .. 7
3. Functionality of the Lead Developer role .. 10
3.1. Description of Lead Developer GUI .. 10

3.1.2. New setup module creation ... 13
3.1.3. New setup creation .. 14

3.1.4. Edit objects ... 16

4. References ... 16

1. Introduction

The Geometry database (DB) supports the geometry of the CBM experiment at the detailed

level required for simulation of particles transport through the setup using GEANT3. The main

purpose of the database is to provide convenient tools for managing the geometry modules

(MVD, STS, RICH, TRD, RPC, ECAL, PSD, MUCH, Magnet, BeamPipe) and assemble various

versions of the CBM setup as a combination of geometry modules and additional files (Fields,

Materials).

2

The Geometry DB Userôs Guide describes operations of users in accordance with their roles

and corresponding functionality. There are three types of users: User, Developer, Lead

Developer [1]. The User role allows one to view, load and download an approved setup or setup

module. The Developer role allows one to create setup module and update any data of this

module until its approval. The Lead Developer role allows one to create and update any setup.

Both Lead Developer and Developer are able to use the functionality of User role, Lead

Developer is able to use the functionality of Developer. All user operations are supported by

convenient API and GUI tools.

2. Functionality of the User role

By default any user of the Geometry DB has the User role. The User is a key client of the

Geometry DB. The setup subset is a setup module that belongs to any approved setup [1]. The

User can view, load and download any setup or setup subset of CBM Geometry DB using the

functionality of GUI or API. User can view any parameter of approved setups and their details.

User can not view the content of root files that are stored in the Geometry DB.

2.1. Description of the User API

The API is implemented as a set of macros of the ROOT framework. These macros permit

CBM users to obtain information about the existing setups and to load the geometry of the

selected setup into the memory of application. Any macro can be used as an executable file or

run from any ROOT macro.

The User can use following macros:

- macro for viewing list of approved setups;

- macro for loading setup or setup subset into CBM ROOT environment

- macro for downloading root files of approved setup or setup subset into some directory of

User local file system

The description of macros and the examples are given below.

There is a set of environmental variables used by macros:

DBL_ROOT_PATH is a path to the directory where files in the ROOT format are stored.

DBL_FILE_PA TH is a full or relative path to the file which stores the SQLite database. In case

of relative path the parent directory is the directory of application.

TMP_PATH is a path to temporary directory used by macro.

To use the Geometry DB one should:

1) download replica of full database as SQLite DB [2] in tar format. The name of tar file with

content of replica is ñlocaldb.tarò.

2) uncompress tar file. For example command ñtar xvf localdb.tarò can be used. After that the

content of tar file will be in the directory with temporary numeric name, like 937822181. There

is one directory with name ñstorageò and one file with name ñlocal.dbò.

3) set the value of DBL_ROOT_PATH variable as a full path of the directory ñstorageò.

4) set the value of DBL_FILE_PATH variable as a path of the file ñlocal.dbò.

5) set the value of TMP_PATH variable as any available temporary directory. The

ñ/tmp/userò directory is used by default.

3

After this user can run any macro described below.

2.1.1. List of available setups

Description: to print the list of available setups including tag, date of creation, author and

description parameters for each approved setup.

Signature: getSetupList()

Input parameters: No

Return value: No

Example: getSetupList.c();

Output:
Setup list:

Tag Date Author Description

sis100_electron 23.06.2017 evgeny description of sis100_electron

2.1.2. Load setup into CBM ROOT framework

Description: to load setup into the CBM ROOT framework. The Geometry can be used in

ROOT framework afterwards.

Signature: bool loadSetup(const char* setupTag, const char* moduleName);

Input parameters:
 Parameter setupTag: Tag of the setup to be loaded.

 Type: const char*

Parameter moduleName: short name of the module to be loaded. The list of possible

modules:

 ñ*ò ï all setup modules to be loaded

 ñcaveò, ñmagnetò, ñpipeò , ñmvdò, ñstsò, ñrichò, ñtrdò, ñtofò, ò psdò, ñmuchò, ñplatformò

Type: const char*

Return value: Return FALSE if setup is not loaded, and TRUE if the loading is successful.

Example: bool res = loadSetup(ñsis100_electronò, ñ*ò); FALSE

Setup sis100_electron is not loaded due to errors.

2.1.3. Load setup into CBM ROOT environment by

module Id

Description: to load setup into the CBM ROOT framework. The Geometry can be used in

ROOT framework afterwards.

4

Signature: bool loadSetup(const char* setupTag, int moduleId);

Input parameters:
 Parameter setupTag: Tag of the setup to be loaded.

 Type: const char*

Parameter moduleId: identifier (id) of the module to be loaded. The list of possible module

identifiers:

 -1 ï all setup modules to be loaded

 0 - cave

 1 - magnet

 2 - pipe

 4 - mvd

 8 - sts

 16 - rich

 32 - trd

 64 - tof

 128 ï psd

 256 ï platform

 512 - much

Type: int

Return value: Return FALSE if setup is not loaded, and TRUE if loading is successful.

Example: loadSetup(ñsis100_electronò,-1); TRUE

 Setup sis100_electron is loaded and ready to be used.

2.1.4. Download setup or download setup subset to local

directory by module name

Description: to download full setup root files or setup subset root file to the local directory

by module name.

Signature: bool downloadSetup(const char* setupTag, const char* moduleName, const

char* targetDir);

Input parameters:
 Parameter setupTag: Tag of the setup to be downloaded to the current directory.

 Type: const char*

Parameter moduleName: short name of the module to be downloaded. The list of possible

module names:

 ñ*ò ï all setup modules to be downloaded

 ñcaveò, ñmagnetò, ñpipeò , ñmvdò, ñstsò, ñrichò, ñtrdò, ñtofò, ò psdò, ñmuchò, ñplatformò

Parameter targetDir: full path of the directory where the setup should be downloaded

 Type: const char*

5

Return value: Return FALSE if the setup is not downloaded correctly due to errors and

TRUE if the loading is successful.

 Example: downloadSetup(ñsis100_electronò, ñpipeò, ñ/workdirò);

 The root file of the pipe module of ñsis100_electron setupò is downloaded into the

ñ/workdirò directory.

2.1.5. Download setup or download setup subset to local

directory by module identifier

Description: to download full setup root files or setup subset root file to the local directory

by module unique identifier.

Signature: bool downloadSetup(const char* setupTag, int moduleId, const char*

targetDir);

Input parameters:
 Parameter setupTag: Tag of the setup to be downloaded to the current directory.

 Type: int

 Parameter moduleId: identifier (id) of the module to be downloaded. . The list of

possible module identifiers:

 -1 ï all setup modules to be loaded

 0 - cave

 1 - magnet

 2 - pipe

 4 - mvd

 8 - sts

 16 - rich

 32 - trd

 64 - tof

 128 ï psd

 256 ï platform

 512 - much.

 Parameter targetDir: full path of the directory where setup should be downloaded

 Type: const char*

 Return value: Return FALSE if setup is not downloaded correctly due to errors and TRUE

if the loading is successful.

 Example: downloadSetup(ñsis100_electronò, 2);

 The root file of the pipe module from the ñsis100_electron setupò is downloaded into the

current directory.

2.1.6. Load setup to CBM ROOT environment using shifts

 Description: to load the setup to the ROOT environment. There is a possibility to shift

any module inside the setup using xml file.

6

Signature: bool loadSetup(const char* setupTag, const char* moduleName, const char*

xml);

Input parameters:
 Parameter setupTag: Tag of the setup to be loaded.

 Type: const char*

 Parameter moduleName: short name of the module to be loaded. The possible short

names:

 ñ*ò ï all setup modules to be loaded

 ñcaveò, ñmagnetò, ñpipeò , ñmvdò, ñstsò, ñrichò, ñtrdò, ñtofò, ò psdò, ñmuchò, ñplatformò

 Type: const char*

 Parameter xml: the structure of the xml file is shown below. This file contains

information on the setup modules and their shifts. The module is shifted by X, Y, Z inside

the setup if the value of parameter ñenableò is TRUE. The module is not shifted if the value

of parameter ñenableò is FALSE.

The parameters of the setupModule are:

 type: short name of the setup module. The possible values are ñcaveò, ñmagnetò, ñpipe,

ñmvdò, ñstsò, ñrichò, ñtrdò, ñtofò, ò psdò, ñmuchò, ñplatformò.

enable: moveX, moveY and moveZ values are used if the enable parameter is TRUE.

 moveX: value of X-axis module shift, type of value is integer.

 moveY: value of Y-axis module shift, type of value is integer.

 moveZ: value of Z-axis module shift, type of value is integer.

XML file structure:

<setup>

<setupModule type="sts" enable="true" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="magnet" enable="true" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="mvd" enable="true" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="rich" enable="true" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="trd" enable="true" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="pipe" enable="true" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="much" enable="false" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="tof" enable="true" moveX="0" moveY="0" moveZ="0"/>

<setupModule type="psd" enable="true" moveX="0" moveY="0" moveZ="0"/>

</setup>

The module is not shifted if there is no corresponding module type specified in the XML file.

Type: const char*

Return value: Returns FALSE if setup is not loaded due to errors and TRUE if the loading

is successful.

2.1.7. Load setup to CBM ROOT environment from

central data base

Description: Load setup into the CBM ROOT framework from central DB.

Signature: bool loadSetupByURL(const char* setupTag, const char* host);

7

Input parameters:
 Parameter setupTag: Tag of the setup to be loaded.

 Type: const char*

 Parameter host: URL of the host where core DB is running/

 Type: const char*

Return value: Return FALSE if setup is not loaded, and TRUE if the loading is successful.

Example: bool res = loadSetup(ñsis100_electronò, "http://cbmdb.jinr.ru");

2.2. User GUI description

GUI was implemented as a standard web-interface [3]. All types of CBM users are able to

view and use the Geometry DB in their applications after downloading the entire archived

database ýle to the local disk. There is also a possibility to download any setup as archived ýle to

use locally. The interface has a compact form and allows one to get the information by drilling

down. From the list of available setups the user can get to the level with the detailed description

of the setup, and get further to the description of setup modules. It is possible to view available

Materials and Fields.

The User role can be used without the authorization. The view-mode of the CBM Geometry

DB GUI is shown in Figure 1. The user can use buttons View Setup, View Setup Modules, View

Files, View Materials or View Fields.

Figure 1.GUI: Initial view of CBM Geometry DB.

The list of available setups after clicking the View Setup button is shown in Figure 2. The Tag is

a unique tag of the setup. The tag value can be used in API for loadSetup or downloadSetup

macros. User can download any setup in tar format by clicking the corresponding button in the

column Download.

http://cbmdb.jinr.ru/

8

Figure 2 The list of available setups.

User can view the details of any setup after clicking the correspond tag. The view of the setup

with details is shown in Figure 3. User can view the list of setup modules together with their

parameters, magnetic field and materials parameters.

Figure 3. List of modules, field and materials of sis100_electron setup with their parameters.

User can view the details of the transformation matrix of any module by clicking the tag of

module. User can also view the parameters of magnetic field by clicking the appropriate tag. The

view is shown in Figure 4.

9

.

Figure 4. View of the list of the setup modules, the transformation matrix of pipe and the

magnetic field parameters.

User can view the parameters of any setup module, magnetic field, materials or ROOT files

stored in database by clicking the corresponding button on the left side of GUI panel. The

database may also include objects that do not yet belong to any setup. User can download any

object by clicking an appropriate button in Download column on the right side of panel.

The view mode of View Setup Modules is shown in Figure 5. User can download the replica of

the full database in the SQLite DB [2] format as tar file with the name ñlocaldb.tarò.

10

Figure 5 Available setup modules view.

3. Functionality of the Lead Developer role

Only users with the Lead Developer role have privileges to add, edit and view any objects of

the Geometry DB. Prime use cases of the Lead Developer are creation and editing setups. Any

setup consists of the setup modules that are usually created and edited by Developers. Lead

Developer is also able to create and edit any setup module as well as compile and edit the full

setup.

3.1. Description of Lead Developer GUI

The user should be granted a Lead Developer role to operate as a Lead Developer. For

authorization use Login button in the upper right side of the GUI panel. An appropriate user

name and the Edit button appear if the login is successful (see Figure 6).

Figure 6. Part of GUI panel ready for edit actions.

11

After clicking Edit button Edit Admin Interface appears (see Figure 7).

Figure 7. Edit Admin Interface.

3.1.1. The procedure for a new object creation

Only Lead Developer has privilege to create a new object. In order to create new setup,

material, root file, magnetic field or setup module objects user should click an appropriate Edit

button. The list of existing objects appears. Then click button Create New Material (or Create

New Setup, or Create New File, or Create New Field, or Create New Setup Module) below the

list. The example for Edit Material is shown in Figure 8. Then set the value of the tag and click

OK button. User can move back using Edit button (top right corner of the window).

12

Figure 8. Example for Edit Material.

While creating Tag for the object File it is needed to select from combo box the module the file

belongs to. The example of GUI panel with object File creation is shown in figure 9.

Figure 9. The GUI Lead Developer panel with view of File tag creation.

Then it is needed to fill in the fields for a new object (see Figure 10). The mandatory fields are

marked by red asterisk. Then click Add Material button (or Add Setup, or Add File, or Add

Field, or Add Setup Module)

