000072398 001__ 72398
000072398 005__ 20180109133833.0
000072398 0247_ $$2DOI$$9Springer$$a10.1134/S1547477117060127
000072398 035__ $$9INSPIRETeX$$aDedovich:2017hin
000072398 035__ $$9DESY$$zD17-kj52r
000072398 100__ $$aDedovich, T.G.$$uDubna, JINR$$vJoint Institute for Nuclear Research - Dubna - 141980 - Russia
000072398 245__ $$9Springer$$aFractal reconstruction in the presence of background events
000072398 260__ $$c2017-11-25$$tpublished
000072398 300__ $$a9
000072398 520__ $$9Springer$$aAn analysis of a data set containing fractals and background events is carried out using the method of the equation system of P-adic coverings (SePaC) and by the box-counting (BC) method. The peculiarities of these methods applied to the search for fractals in sets containing only fractals and background events are studied. Procedures allowing one to establish the presence of fractals, estimate their number in the initial set, separate fractals, and evaluate the portion of background events in the extracted set are suggested. A comparison of the result of an analysis of mixed events by these methods is carried out.
000072398 65017 $$2INSPIRE$$aPhenomenology-HEP
000072398 6531_ $$9author$$aself-similarity
000072398 6531_ $$9author$$afractal dimension
000072398 6531_ $$9author$$aparton shower
000072398 695__ $$2INSPIRE$$afractal: dimension
000072398 695__ $$2INSPIRE$$aparton: showers
000072398 695__ $$2INSPIRE$$abackground
000072398 700__ $$aTokarev, M.V.$$uDubna, JINR$$vJoint Institute for Nuclear Research - Dubna - 141980 - Russia
000072398 773__ $$c865-873$$n6$$pPhys.Part.Nucl.Lett.$$v14$$y2017
000072398 909CO $$ooai:inspirehep.net:1642596$$pINSPIRE:HEP
000072398 980__ $$aCORE
000072398 980__ $$aHEP
000072398 980__ $$aPublished
000072398 980__ $$aCiteable
000072398 999C5 $$9refextract$$adoi:10.1134/S1547477111060070$$hT. Dedovich and M. Tokarev$$sPhys.Part.Nucl.Lett.,8,521-532$$tP-adic coverage method in fractal analysis of showers$$xT. Dedovich and M. Tokarev, “P-adic coverage method in fractal analysis of showers,” Phys. Part. Nucl. Lett. 8, 521–532 (2011)., DOI: 10.1134/S1547477111060070$$y2011
000072398 999C5 $$9refextract$$adoi:10.1134/S1547477112060052$$hT. Dedovich and M. Tokarev$$sPhys.Part.Nucl.Lett.,9,552-566$$tMethod of systems of the equations of p-adic coverages for fractal analysis of events$$xT. Dedovich and M. Tokarev, “Method of systems of the equations of p-adic coverages for fractal analysis of events,” Phys. Part. Nucl. Lett. 9, 552–566 (2012)., DOI: 10.1134/S1547477112060052$$y2012
000072398 999C5 $$9refextract$$adoi:10.1134/S1547477113060071$$hT. Dedovich and M. Tokarev$$sPhys.Part.Nucl.Lett.,10,481-490$$tComparision of fractal analysis methods in the study of fractals with independent branching$$xT. Dedovich and M. Tokarev, “Comparision of fractal analysis methods in the study of fractals with independent branching,” Phys. Part. Nucl. Lett. 10, 481–490 (2013)., DOI: 10.1134/S1547477113060071$$y2013
000072398 999C5 $$9refextract$$adoi:10.1134/S1547477113060083$$hT. Dedovich and M. Tokarev$$sPhys.Part.Nucl.Lett.,10,491-500$$tAnalysis of fractal with dependent branching by box counting, p-adic coverages and system of equations of p-adic coverages$$xT. Dedovich and M. Tokarev, “Analysis of fractal with dependent branching by box counting, p-adic coverages and system of equations of p-adic coverages,” Phys. Part. Nucl. Lett. 10, 491–500 (2013)., DOI: 10.1134/S1547477113060083$$y2013
000072398 999C5 $$9refextract$$adoi:10.1134/S1547477116020060$$hT. Dedovich and M. Tokarev$$sPhys.Part.Nucl.Lett.,13,169-177$$tAnalysis of fractals with combined partition$$xT. Dedovich and M. Tokarev, “Analysis of fractals with combined partition,” Phys. Part. Nucl. Lett. 13, 169–177 (2016)., DOI: 10.1134/S1547477116020060$$y2016
000072398 999C5 $$9refextract$$adoi:10.1134/S1547477116020072$$hT. Dedovich and M. Tokarev$$sPhys.Part.Nucl.Lett.,13,178-189$$tA two-step procedure of fractal analysis$$xT. Dedovich and M. Tokarev, “A two-step procedure of fractal analysis,” Phys. Part. Nucl. Lett. 13, 178–189 (2016)., DOI: 10.1134/S1547477116020072$$y2016
000072398 999C5 $$9refextract$$hB. Mandelbrot$$mThe Fractal Geometry of Nature (Freeman, San Francisco,)$$xB. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).$$y1982
000072398 999C5 $$9refextract$$hE. Feder$$mFractals$$mNew York, London,)$$xE. Feder, Fractals (Plenum, New York, London, 1998).$$y1998
000072398 999C5 $$9refextract$$adoi:10.1007/BF01457179$$hF. Hausdorff$$sMath.Ann.,79,157$$tDimension and äusseres mass$$xF. Hausdorff, “Dimension and äusseres mass”. Math. Ann. 79, 157 (1918)., DOI: 10.1007/BF01457179$$y1918