000071919 001__ 71919
000071919 005__ 20170901120222.0
000071919 035__ $$9INSPIRETeX$$aBanerjee:2017mdu
000071919 035__ $$9arXiv$$aoai:arXiv.org:1708.04087
000071919 035__ $$9CDS$$a2280707
000071919 035__ $$9DESY$$zDA17-kp34ai
000071919 037__ $$9arXiv$$aarXiv:1708.04087$$cphysics.ins-det
000071919 100__ $$aBanerjee, D.$$uZurich, ETH$$vETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
000071919 245__ $$9arXiv$$aPerformance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam
000071919 246__ $$9arXiv$$aPerformance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam
000071919 269__ $$c2017-08-14
000071919 500__ $$a*Temporary entry*
000071919 520__ $$9arXiv$$aWe present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3.3 $\times$ 10$^5$ e$^- $/(s$\cdot$cm$^2$). So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. At the beam intensities analysed in this work and with a multiplexing factor of 5, more than 50% level of ambiguity is introduced. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be $\sim$ 96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with $\sim$ 85% combined tracking efficiency.
000071919 540__ $$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
000071919 65017 $$2arXiv$$aphysics.ins-det
000071919 65017 $$2INSPIRE$$aInstrumentation
000071919 65017 $$2arXiv$$ahep-ex
000071919 65017 $$2INSPIRE$$aExperiment-HEP
000071919 695__ $$2INSPIRE$$aelectron: irradiation
000071919 695__ $$2INSPIRE$$acluster: size
000071919 695__ $$2INSPIRE$$aMicromegas
000071919 695__ $$2INSPIRE$$aperformance
000071919 695__ $$2INSPIRE$$aefficiency
000071919 695__ $$2INSPIRE$$atrack data analysis
000071919 695__ $$2INSPIRE$$aspatial resolution
000071919 695__ $$2INSPIRE$$asignal processing
000071919 700__ $$aBurtsev, V.$$uTomsk Polytechnic U.$$vTomsk Polytechnic University, 634050 Tomsk, Russia
000071919 700__ $$aChumakov, A.$$uTomsk Polytechnic U.$$vTomsk Polytechnic University, 634050 Tomsk, Russia
000071919 700__ $$aCooke, D.$$uZurich, ETH$$vETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
000071919 700__ $$aDepero, E.$$uZurich, ETH$$vETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
000071919 700__ $$aDermenev, A.V.$$uMoscow, INR$$vInstitute for Nuclear Research, 117312 Moscow, Russia
000071919 700__ $$aDonskov, S.V.$$uSerpukhov, IHEP$$vState Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia
000071919 700__ $$aDubinin, F.$$uLebedev Inst.$$vP. N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia
000071919 700__ $$aDusaev, R.R.$$uTomsk Polytechnic U.$$vTomsk Polytechnic University, 634050 Tomsk, Russia
000071919 700__ $$aEmmenegger, S.$$uZurich, ETH$$vETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
000071919 700__ $$aFabich, A.$$uCERN$$vCERN, European Organization for Nuclear Research, CH-1211 Geneva, Switzerland
000071919 700__ $$aFrolov, V.N.$$uDubna, JINR$$vJoint Institute for Nuclear Research, 141980 Dubna, Russia
000071919 700__ $$aGardikiotis, A.$$uPatras U.$$vPhysics Department, University of Patras, Patras, Greece
000071919 700__ $$aGninenko, S.N.$$uMoscow, INR$$vInstitute for Nuclear Research, 117312 Moscow, Russia
000071919 700__ $$aHösgen, M.$$uBonn U., HISKP$$vUniversität Bonn, Helmholtz-Institut für Strahlen-und Kernphysik, 53115 Bonn, Germany
000071919 700__ $$aKarneyeu, A.E.$$uMoscow, INR$$vInstitute for Nuclear Research, 117312 Moscow, Russia
000071919 700__ $$aKetzer, B.$$uBonn U., HISKP$$vUniversität Bonn, Helmholtz-Institut für Strahlen-und Kernphysik, 53115 Bonn, Germany
000071919 700__ $$aKirsanov, M.M.$$uMoscow, INR$$vInstitute for Nuclear Research, 117312 Moscow, Russia
000071919 700__ $$aKonorov, I.V.$$uMunich, Tech. U.$$uLebedev Inst.$$vTechnische Universität München, Physik Department, 85748 Garching, Germany$$vP. N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia
000071919 700__ $$aKramarenko, V.A.$$uSINP, Moscow$$vSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
000071919 700__ $$aKuleshov, S.V.$$uCCTVal, Valparaiso$$vUniversidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
000071919 700__ $$aLevchenko, E.$$uTomsk Polytechnic U.$$vTomsk Polytechnic University, 634050 Tomsk, Russia
000071919 700__ $$aLyubovitskij, V.E.$$uTomsk Polytechnic U.$$uCCTVal, Valparaiso$$vTomsk Polytechnic University, 634050 Tomsk, Russia$$vUniversidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
000071919 700__ $$aLysan, V.$$uDubna, JINR$$vJoint Institute for Nuclear Research, 141980 Dubna, Russia
000071919 700__ $$aMamon, S.$$uTomsk Polytechnic U.$$vTomsk Polytechnic University, 634050 Tomsk, Russia
000071919 700__ $$aMatveev, V.A.$$uDubna, JINR$$vJoint Institute for Nuclear Research, 141980 Dubna, Russia
000071919 700__ $$aMikhailov, Yu.V.$$uSerpukhov, IHEP$$vState Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia
000071919 700__ $$aMyalkovskiy, V.V.$$uDubna, JINR$$vJoint Institute for Nuclear Research, 141980 Dubna, Russia
000071919 700__ $$aPeshekhonov, V.D.$$uDubna, JINR$$vJoint Institute for Nuclear Research, 141980 Dubna, Russia
000071919 700__ $$aPeshekhonov, D.V.$$uDubna, JINR$$vJoint Institute for Nuclear Research, 141980 Dubna, Russia
000071919 700__ $$aPolyakov, V.A.$$uSerpukhov, IHEP$$vState Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia
000071919 700__ $$aRadics, B.$$uZurich, ETH$$vETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
000071919 700__ $$aRubbia, A.$$uZurich, ETH$$vETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
000071919 700__ $$aSamoylenko, V.D.$$uSerpukhov, IHEP$$vState Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia
000071919 700__ $$aTikhomirov, V.O.$$uLebedev Inst.$$vP. N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia
000071919 700__ $$aTlisov, D.A.$$uMoscow, INR$$vInstitute for Nuclear Research, 117312 Moscow, Russia
000071919 700__ $$aToropin, A.N.$$uMoscow, INR$$vInstitute for Nuclear Research, 117312 Moscow, Russia
000071919 700__ $$aVasilishin, B.$$uTomsk Polytechnic U.$$vTomsk Polytechnic University, 634050 Tomsk, Russia
000071919 700__ $$aVasquez Arenas, G.$$uCCTVal, Valparaiso$$vUniversidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
000071919 700__ $$aUlloa, P.$$uCCTVal, Valparaiso$$vUniversidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
000071919 700__ $$aCrivelli, P.$$uZurich, ETH$$vETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
000071919 8564_ $$s10044$$uhttp://inspirehep.net/record/1615867/files/ambig_flux.png$$y00005 Probability of ambiguity ($\%$) due to cluster signal spread estimated for 1 particle hit events (left) and due to pileup events for 2 particle hit events (right).
000071919 8564_ $$s10268$$uhttp://inspirehep.net/record/1615867/files/1clu_ambig_flux.png$$y00004 Probability of ambiguity ($\%$) due to cluster signal spread estimated for 1 particle hit events (left) and due to pileup events for 2 particle hit events (right).
000071919 8564_ $$s11344$$uhttp://inspirehep.net/record/1615867/files/r12_time.png$$y00009 Ratio $r_{02}$ and $r_{12}$ as a function of the latency settings.
000071919 8564_ $$s12017$$uhttp://inspirehep.net/record/1615867/files/r02_time.png$$y00008 Ratio $r_{02}$ and $r_{12}$ as a function of the latency settings.
000071919 8564_ $$s12137$$uhttp://inspirehep.net/record/1615867/files/MM12X.png$$y00014 Distribution of difference of cluster positions in each projection between two MM modules. The black histogram is the data and the red line is a fitted Gaussian function with parameters ``$\sigma_{d}$" and ``Mean". Position resolution for each module $\sim$ 100 $\mu$m assuming same spatial resolution of each module
000071919 8564_ $$s127944$$uhttp://inspirehep.net/record/1615867/files/DAQ_scheme.png$$y00003 General schematic of the NA64 DAQ.
000071919 8564_ $$s12802$$uhttp://inspirehep.net/record/1615867/files/MM12Y.png$$y00015 Distribution of difference of cluster positions in each projection between two MM modules. The black histogram is the data and the red line is a fitted Gaussian function with parameters ``$\sigma_{d}$" and ``Mean". Position resolution for each module $\sim$ 100 $\mu$m assuming same spatial resolution of each module
000071919 8564_ $$s14638$$uhttp://inspirehep.net/record/1615867/files/MM_eff_flux_new.png$$y00012 Hit Detection Efficiency of the four MM modules as a function of the beam flux
000071919 8564_ $$s15806$$uhttp://inspirehep.net/record/1615867/files/MM_eff_volt_new.png$$y00011 Hit Detection Efficiency of the four MM modules as a function of the amplification voltage
000071919 8564_ $$s172814$$uhttp://inspirehep.net/record/1615867/files/Gain_Curve.png$$y00010 Gain of a Micromegas module as a function of the amplification voltage
000071919 8564_ $$s25770$$uhttp://inspirehep.net/record/1615867/files/genmom_ang_2363_allcut_xp_noang.png$$y00023 Momentum reconstructed as a function of the incoming angle for incoming particle deflected towards the negative x axis (left) and positive x axis (right).
000071919 8564_ $$s26385$$uhttp://inspirehep.net/record/1615867/files/genmom_ang_2363_allcut_xn_noang.png$$y00024 Momentum reconstructed as a function of the incoming angle for incoming particle deflected towards the negative x axis (left) and positive x axis (right).
000071919 8564_ $$s269088$$uhttp://inspirehep.net/record/1615867/files/setup348.png$$y00000 NA64 detailed setup showing all sub-detectors (taken from \cite{PRL}).
000071919 8564_ $$s27378$$uhttp://inspirehep.net/record/1615867/files/mm1_spot.png$$y00013 Typical Beam spot on the four Micromegas modules.
000071919 8564_ $$s556982$$uhttp://inspirehep.net/record/1615867/files/MM_NA.png$$y00002 Micromegas detector placed in the CERN SPS H4 Beam line.
000071919 8564_ $$s59770$$uhttp://inspirehep.net/record/1615867/files/Mom_ang_cartoon.png$$y00022 Example of incoming beam deflection. Incoming angle is calculated with respect to the Z- axis
000071919 8564_ $$s71909$$uhttp://inspirehep.net/record/1615867/files/xy_new.png$$y00001 Left: Sketch of the strip dimensions of the Micromegas modules. The pitch of the strip layers is 250 $\mu$m. Right: Principle of operation of a Micromegas Detector.
000071919 8564_ $$s7483$$uhttp://inspirehep.net/record/1615867/files/mm34dx_ambig.png$$y00006 Distribution of difference of cluster positions in each projection between MM 3 and 4 after selecting parallel tracks within the beam spot with MM 1 and 2 with energy 100 GeV $\pm$ 2 GeV selected with the ECAL.
000071919 8564_ $$s8013$$uhttp://inspirehep.net/record/1615867/files/signal_shape.png$$y00007 Shape of signal sampled by a APV chip indicating the three samples 25 ns apart
000071919 8564_ $$s8287$$uhttp://inspirehep.net/record/1615867/files/Y_clu_size.png$$y00018 Size of clusters/plane in the Micromegas modules
000071919 8564_ $$s8989$$uhttp://inspirehep.net/record/1615867/files/mm2y_t0.png$$y00016 Timing distribution of the Micromegas modules with respect to scintillator S1 time. The black histogram is data and the red line is a fitted Gaussian function with standard deviation $\sigma_{t}$
000071919 8564_ $$s9287$$uhttp://inspirehep.net/record/1615867/files/X_clu_size.png$$y00017 Size of clusters/plane in the Micromegas modules
000071919 8564_ $$s9291$$uhttp://inspirehep.net/record/1615867/files/ang_out.png$$y00021 Left: incoming particle azimuthal angle before the spectrometer measured with MM1 and MM2 with respect to the average beam axis. Right: outgoing  particle azimuthal angle measured after the magnets with MM3 and MM4 with respect to the average  deflected beam axis.
000071919 8564_ $$s9519$$uhttp://inspirehep.net/record/1615867/files/ang_in_2363.png$$y00020 Left: incoming particle azimuthal angle before the spectrometer measured with MM1 and MM2 with respect to the average beam axis. Right: outgoing  particle azimuthal angle measured after the magnets with MM3 and MM4 with respect to the average  deflected beam axis.
000071919 8564_ $$s9815$$uhttp://inspirehep.net/record/1615867/files/mom_new_2363.png$$y00019 Reconstructed momentum with the four Micromegas modules for a 100 GeV/c beam. The black histogram is data and the red line is a fitted Gaussian function with parameters ``Sigma" and ``Mean"
000071919 8564_ $$s1678549$$uhttp://inspirehep.net/record/1615867/files/arXiv:1708.04087.pdf
000071919 909CO $$ooai:inspirehep.net:1615867$$pCERN$$pINSPIRE:HEP$$pCERN:arXiv$$pCDS
000071919 980__ $$aCORE
000071919 980__ $$aarXiv
000071919 980__ $$aCiteable
000071919 980__ $$aHEP
000071919 999C6 $$a0-1-0-1-0-0-0$$t2017-08-15 07:37:18$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44$$vcontent.pdf;1
000071919 999C5 $$hB. Beltran et al.$$mSearch for solar axions: the CAST experiment at CERN, Nucl. Instr. and Meth. in Phys. Res. B 197  62-65$$o1$$y2005
000071919 999C5 $$hY. Giomataris$$mPh. Rebourgeard, J.P. Robert, G Charpak, Nucl. Instr. and Meth. in Phys. Res$$o2$$sInt.J.Mod.Phys.,376,29-35$$y1996
000071919 999C5 $$cCOMPASS Collaboration$$mCOMPASS Experiment at CERN, Nucl. Instr. and Meth. in Phys. Res$$o3$$sInt.J.Mod.Phys.,577,455-518$$y2007
000071919 999C5 $$mCharles, Gabriel, Development of Micromegas detectors for the CLAS12 experiment at Jefferson Laboratory, (Sep) (FRCEA-TH-5915)$$o4$$y2013
000071919 999C5 $$hF J Iguaz, D Attie, D Calvet et al.$$mMicromegas detector developments for Dark Matter directional detection with MIMAC, Journal of Instrumentation, Volume 6 (July)$$o5$$y2011
000071919 999C5 $$0528223$$adoi:10.1016/S0168-9002(00)01051-2$$hJ. Derre, Y. Giomataris, H. Zaccone, A. Bay, J. P. Perroud and F. Ronga$$o6$$sNucl.Instrum.Meth.,A459,523$$y2001
000071919 999C5 $$hA. Peyaud, A. Angelopoulos, C. Chelmis et al.$$mThe ForFire photodetector, Nucl. Instr. and Meth. in Phys. Res$$o7$$sInt.J.Mod.Phys.,787,102-104$$y2015
000071919 999C5 $$01247838$$mMaxim Titov, Perspectives of Micro-Pattern Gaseous Detector Technologies for Future Physics Projects$$o8$$rarXiv:1308.3047$$y2013
000071919 999C5 $$o9$$uhttp://rd51-public.web.cern.ch
000071919 999C5 $$01107981$$hM. Byszewski and J. Wotschack$$mResistive-strips micromegas detectors with two-dimensional readout$$o10$$sJINST,7,C02060$$y2012
000071919 999C5 $$hS. Procureur, R. Dupre, S. Aune$$mGenetic Multiplexing and first results with a 50 × 50 cm2 Micromegas, Nucl. Instr. and Meth. in Phys. Res$$o11$$sInt.J.Mod.Phys.,729,888-894$$y2013
000071919 999C5 $$01392453$$hShu-Bin et al.$$mQI Bin-Xiang LIU A Novel Method of Encoded Multiplexing Readout for Micro-pattern Gas Detectors$$o12$$rarXiv:1509.02229$$y2015
000071919 999C5 $$01268811$$hS. Andreas, D. Banerjee, S.V. Donskov, P. Crivelli, A. Gardikiotis, S.N. Gninenko, F. Guber et al.$$mProposal for an Experiment to Search for Light Dark Matter at the SPS$$o13$$rarXiv:1312.3309$$y2013
000071919 999C5 $$01114323$$hJ.L. Hewett et al.$$o14$$rarXiv:1205.2671
000071919 999C5 $$01490904$$hD. Banerjee et al.$$m(NA64 Collaboration), Search for Invisible Decays of Sub-GeV Dark Photons in Missing-Energy Events at the CERN SPS$$o15$$sPhys.Rev.Lett.,118,011802$$y2017
000071919 999C5 $$mand$$o16$$uhttp://sba.web.cern.ch/sba/$$uhttp://nahandbook.web.cern.ch/
000071919 999C5 $$01518143$$hE. Depero, D. Banerjee et al.$$mHigh purity 100 GeV electron identification with synchrotron radiation accepted for publication in Nucl. Instr. and Meth. A$$o17$$rarXiv:1703.05993$$y2017
000071919 999C5 $$hD. Banerjee, P. Crivelli, and A. Rubbia$$mBeam Purity for Light Dark Matter Search in Beam Dump Experiment, Adv. High Energy Phys.  105730$$o18$$y2015
000071919 999C5 $$0172278$$hA.J.P.L. Policarpo$$o19$$sPhys.Scripta,23,539$$y1981
000071919 999C5 $$hR.C.Weast$$mHandbook of Chemistry and Physics,  C.R.C. Press Bica Raton, Fl.  205$$o20$$y1981
000071919 999C5 $$hR.I. Schoen$$o21$$sJ.Chem.Phys.,17,2032$$y1962
000071919 999C5 $$0527033$$hN. Pestov et al.$$mYu$$o22$$sNucl.Instrum.Meth.,A456,11$$sInt.J.Mod.Phys.,456,11$$y2000
000071919 999C5 $$01256477$$hG. Iakovidis$$mThe Micromegas project for the ATLAS upgrade$$o23$$sJINST,8,C12007$$y2013
000071919 999C5 $$hM. J. French, L. L. Jones et al.$$mDesign and results from the APV25, a deep sub-micron CMOS front-end chip for the CMS tracker, Nucl. Instr. and Meth. in Phys. Res$$o24$$sInt.J.Mod.Phys.,466,359-365$$y2001
000071919 999C5 $$hB. Ketzer, S. Bachmann et al.$$mGEM Detectors for COMPASS,  IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 4$$o25$$y2001
000071919 999C5 $$0747655$$hP.Abbon, et al.$$o26$$sNucl.Instrum.Meth.,A577,455$$sInt.J.Mod.Phys.,577,455$$y2007
000071919 999C5 $$o27$$uhttps://wwwcompass.cern.ch/compass/detector/daq/status/daqdoc.html
000071919 999C5 $$mSebastian Uhl, Diploma Thesis, Construction and Commissioning of the PixelGEM Tracking System for the COMPASS Experiment$$o28$$y2008
000071919 999C5 $$hQ. Weitzel$$mTriple GEM detectors in COMPASS - a performance study. Diploma thesis, Technische Universit˝at München, November$$o29$$y2003
000071919 999C5 $$0865935$$mMaxim Titov, Gaseous Detectors: recent developments and applications$$o30$$rarXiv:1008.3736$$y2010
000071919 999C5 $$hA. Bressan, M. Hoch, P. Pagano et al.$$mHigh rate behavior and discharge limits in micropattern detectors, Nucl. Instr. and Meth. in Phys. Res$$o31$$sInt.J.Mod.Phys.,424,321-342$$y1999
000071919 999C5 $$01262802$$hY. Kataoka et al.$$mPerformance studies of a micromegas chamber in the ATLAS environment$$o32$$sJINST,9,C03016$$y2014
000071919 999C5 $$hC. Höppner, S. Neubert, B. Ketzer et al.$$mNucl. Instr. and Meth. in Phys. Res$$o33$$sInt.J.Mod.Phys.,620,518-525$$y2010
000071919 999C5 $$hS. Bouteille, D. Attie, P. Baron, D. Calvet, P. Magnier, et al.$$mA Micromegas-based telescope for muon tomography, Nucl. Instr. and Meth. in Phys. Res$$o34$$sInt.J.Mod.Phys.,834,223-228$$y2016
000071919 999C5 $$01484628$$hJ. Alexander, D. Banerjee, P.Crivelli, R. Essig, A. Rubbia et al.$$mDark SectorsWorkshop: Community Report$$o35$$rarXiv:1608.08632$$y2016