000070306 001__ 70306
000070306 005__ 20160902142349.0
000070306 035__ $$9INSPIRETeX$$aBatyuk:2016qmb
000070306 035__ $$9arXiv$$aoai:arXiv.org:1608.00965
000070306 035__ $$9DESY$$zDA16-kp33t
000070306 037__ $$9arXiv$$aarXiv:1608.00965$$cnucl-th
000070306 100__ $$aBatyuk, P.$$uDubna, JINR
000070306 245__ $$9arXiv$$aThree-fluid hydrodynamics based event simulation for collisions at NICA and FAIR energies
000070306 246__ $$9arXiv$$aThree-fluid hydrodynamics based event simulation for collisions at NICA and FAIR energies
000070306 269__ $$c2016-08-02
000070306 300__ $$a18
000070306 500__ $$9arXiv$$a18 pages, 16 figures, references added, minor changes in the text
000070306 520__ $$9arXiv$$aWe present a new event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, UrQMD, to account for hadronic final state interactions. We present first results for nuclear collisions of the FAIR/NICA energy scan program (Au+Au collisions, $\sqrt{s_{NN}}=4-11$ GeV). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model EoS, one with a first order phase transition the other with a crossover type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.
000070306 540__ $$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
000070306 65017 $$2arXiv$$anucl-th
000070306 65017 $$2INSPIRE$$aTheory-Nucl
000070306 65017 $$2arXiv$$ahep-ph
000070306 65017 $$2INSPIRE$$aPhenomenology-HEP
000070306 695__ $$2INSPIRE$$aenergy: high
000070306 695__ $$2INSPIRE$$adecoupling: surface
000070306 695__ $$2INSPIRE$$adensity: high
000070306 695__ $$2INSPIRE$$ap: rapidity
000070306 695__ $$2INSPIRE$$ap: flow
000070306 695__ $$2INSPIRE$$aquantum molecular dynamics: relativistic
000070306 695__ $$2INSPIRE$$anucleus nucleus: scattering
000070306 695__ $$2INSPIRE$$ahydrodynamics
000070306 695__ $$2INSPIRE$$aNICA
000070306 695__ $$2INSPIRE$$aDarmstadt GSI FAIR
000070306 695__ $$2INSPIRE$$afinal-state interaction
000070306 695__ $$2INSPIRE$$acritical phenomena
000070306 695__ $$2INSPIRE$$atransport theory
000070306 695__ $$2INSPIRE$$aMonte Carlo
000070306 695__ $$2INSPIRE$$anumerical calculations
000070306 695__ $$2INSPIRE$$a4-11 GeV-cms/nucleon
000070306 700__ $$aBlaschke, D.$$uWroclaw U.$$uDubna, JINR$$uMoscow Phys. Eng. Inst.
000070306 700__ $$aBleicher, M.$$uFrankfurt U.$$uFrankfurt U., FIAS
000070306 700__ $$aIvanov, Yu. B.$$uKurchatov Inst., Moscow$$uMoscow Phys. Eng. Inst.
000070306 700__ $$aKarpenko, Iu.$$uBITP, Kiev$$uINFN, Florence
000070306 700__ $$aMerts, S.$$uDubna, JINR
000070306 700__ $$aNahrgang, M.$$uDuke U.$$uSUBATECH, Nantes
000070306 700__ $$aPetersen, H.$$uDarmstadt, GSI$$uFrankfurt U.$$uFrankfurt U., FIAS
000070306 700__ $$aRogachevsky, O.$$uDubna, JINR
000070306 8564_ $$s12351$$uhttp://inspirehep.net/record/1478995/files/Delta-N.png$$y00007 (Color online) Mean standard deviation ("error") for the curvature as a function of the event statistics for central ($b=2~$fm), semicentral ($b=6~$fm) and peripheral ($b=11~$fm) Au+Au collisions at $E_{\rm lab}=30~$A~GeV for the 2-phase EoS model.
000070306 8564_ $$s19899$$uhttp://inspirehep.net/record/1478995/files/fig5_THESEUS.png$$y00005 (Color online) Energy scan of the slope of the directed flow ($dv_1/dy$) of pions for semicentral ($b=6$ fm) Au+Au collisions. We compare results for 3FH (black solid line), THESEUS (blue short-dashed line) and THESEUS without UrQMD hadronic rescattering (red long-dashed line). Data from the STAR beam energy scan \cite{Adamczyk:2014ipa} are shown by star symbols.
000070306 8564_ $$s20669$$uhttp://inspirehep.net/record/1478995/files/fig9_THESEUS.png$$y00008 (Color online) Energy scan for the particle ratio $K^+/\pi^+$ in the NICA energy range for central Au+Au collisions (impact parameter $b=2~$fm) with (blue lines) and without (red lines) the UrQMD hadronic rescattering. The calculation with a first order phase transition in the EoS ("two-phase", upper panel) is compared to that with the crossover EoS (lower panel). For comparison we show the results without particlization and UrQMD rescattering and experimental data, taken from Fig.~11 of Ref.~\cite{Ivanov:2013yqa}. Data from AGS experiments are shown by filled squares, data from NA49 by filled triangles.
000070306 8564_ $$s21657$$uhttp://inspirehep.net/record/1478995/files/fig6_THESEUS.png$$y00004 (Color online) Energy scan of the slope of the directed flow ($dv_1/dy$) of protons for semicentral ($b=6$ fm) Au+Au collisions. We compare results for 3FH (black solid line), THESEUS (blue short-dashed line) and THESEUS without UrQMD hadronic rescattering (red long-dashed line). Data from the AGS experiment E895 \cite{Liu:2000am} are shown by filled squares, data from the STAR beam energy scan \cite{Adamczyk:2014ipa} are given by star symbols and a data point data from NA49 \cite{Alt:2003ab} by a filled triangle.
000070306 8564_ $$s22912$$uhttp://inspirehep.net/record/1478995/files/dndy_12jul.png$$y00003 (Color online) Rapidity distribution for pions (left panel) and kaons (right panel) for central Au+Au collisions ($b=2~$fm) at $E_{\rm lab}=30~$A~GeV for the 2-phase EoS. Comparison between results from the 3FH model (black solid lines) and THESEUS without UrQMD (red dashed lines) show excellent agreement. Comparing these results with the full THESEUS result (green dashed line) shows that the UrQMD hadronic rescattering smeares out the double-peak structure in the kaon rapidity spectrum.
000070306 8564_ $$s23400$$uhttp://inspirehep.net/record/1478995/files/pt_12jul.png$$y00002 (Color online) Transverse momentum spectrum for pions (left panel) and kaons (right panel) for central Au+Au collisions ($b=2~$fm) at $E_{\rm lab}=30~$A~GeV for the 2-phase EoS. Comparison between results from the 3FH model (black solid lines) and THESEUS without UrQMD (red dashed lines) show excellent agreement. Comparing these results with the full THESEUS result (green dashed line) shows that the UrQMD hadronic rescattering leads to a slight steepening of the pion $p_T$ spectrum.
000070306 8564_ $$s38464$$uhttp://inspirehep.net/record/1478995/files/3-EOS.png$$y00000  Pressure scaled by the product of normal nuclear density ($n_0=$ 0.15 fm$^{-3}$) and nucleon mass ($m_N$) versus baryon density scaled by the normal nuclear density for three considered equations of state. Results are presented for three different temperatures $T=$ 10, 100 and 200 MeV (from bottom upwards for corresponding curves).
000070306 8564_ $$s411523$$uhttp://inspirehep.net/record/1478995/files/Au20_mix_b6_nB.png$$y00001 Evolution of the proper baryon density ($n_B/n_0$) scaled by the the normal nuclear density ($n_0=0.15~$fm$^{-3}$) in the reaction plane for a semi-central ($b=6~$fm) Au+Au collision at $\sqrt{s_{NN}}=6.4~$GeV.
000070306 8564_ $$s42763$$uhttp://inspirehep.net/record/1478995/files/graphs_Cy_central.png$$y00006 (Color online) Energy scan for the curvature $C_y$ of the net proton rapidity distribution at midrapidity for central Au+Au collisions with impact parameter $b=2~$fm. We compare the 3FH model result (black solid lines) with THESEUS (blue short-dashed lines) and THESEUS without UrQMD (red long-dashed lines). The results for the two-phase EoS (upper row) are compared to those for the crossover EoS (lower row). The "wiggle" as a characteristic feature for the EoS with a first order phase transition is rather robust against hadronic final state interactions. Data from AGS experiments are shown by filled squares, data from NA49 by filled triangles.
000070306 8564_ $$s45462$$uhttp://inspirehep.net/record/1478995/files/flows_43AGeV_THESEUS.png$$y00014 (Color online) Same as Fig.~\ref{8AGeV} for $E_{\rm lab}=43~$A~GeV (upper two rows) and $E_{\rm lab}=70~$A~GeV (lower two rows).
000070306 8564_ $$s45633$$uhttp://inspirehep.net/record/1478995/files/flows_70AGeV_THESEUS.png$$y00015 (Color online) Same as Fig.~\ref{8AGeV} for $E_{\rm lab}=43~$A~GeV (upper two rows) and $E_{\rm lab}=70~$A~GeV (lower two rows).
000070306 8564_ $$s48086$$uhttp://inspirehep.net/record/1478995/files/flows_30AGeV_THESEUS.png$$y00013 (Color online) Same as Fig.~\ref{8AGeV} for $E_{\rm lab}=20~$A~GeV (upper two rows) and $E_{\rm lab}=30~$A~GeV (lower two rows).
000070306 8564_ $$s48811$$uhttp://inspirehep.net/record/1478995/files/flows_20AGeV_THESEUS.png$$y00012 (Color online) Same as Fig.~\ref{8AGeV} for $E_{\rm lab}=20~$A~GeV (upper two rows) and $E_{\rm lab}=30~$A~GeV (lower two rows).
000070306 8564_ $$s49058$$uhttp://inspirehep.net/record/1478995/files/flows_15AGeV_THESEUS.png$$y00011 (Color online) Same as Fig.~\ref{8AGeV} for $E_{\rm lab}=10~$A~GeV (upper two rows) and $E_{\rm lab}=15~$A~GeV (lower two rows).
000070306 8564_ $$s50161$$uhttp://inspirehep.net/record/1478995/files/flows_10AGeV_THESEUS.png$$y00010 (Color online) Same as Fig.~\ref{8AGeV} for $E_{\rm lab}=10~$A~GeV (upper two rows) and $E_{\rm lab}=15~$A~GeV (lower two rows).
000070306 8564_ $$s51470$$uhttp://inspirehep.net/record/1478995/files/flows_8AGeV_THESEUS.png$$y00009 (Color online) Directed flow ($v_1$) of protons (full symbols) and pions (open symbols) for central ($b=2$ fm), semicentral ($b=6$ fm) and peripheral ($b=11$ fm) Au+Au collisions at $E_{\rm lab}=8~$A~GeV. The upper row is for the 2-phase EoS while the lower row shows results for the crossover EoS. In each panel we show the direct comparison of THESEUS with (blue symbols) and without (red symbols) UrQMD afterburner. Remarkable is the effect of turning pion flow to antiflow due to hadronic rescattering in the dense baryonic medium.
000070306 8564_ $$s70967$$uhttp://inspirehep.net/record/1478995/files/dNdY_prot_scan.png$$y00016 (Color online) Proton rapidity distributions for central ($b=2~$fm), semicentral ($b=6~$fm) and peripheral ($b=11~$fm) Au+Au collisions for the two-phase EoS (upper row) and for the crossover EoS (lower row). Each panel shows the results of THESEUS with (solid lines) and without (dashed lines) for the NICA energy scan with $\sqrt{s_{NN}}=4.3$, 4.7, 5.6, 6.4, 7.7, 9.3 and 11.6 GeV (different colors from black to light blue, resp.).
000070306 8564_ $$s75232$$uhttp://inspirehep.net/record/1478995/files/graphs_Cy.png$$y00018 (Color online) Energy scan for the curvature $C_y$ of the net proton rapidity distribution at midrapidity for central Au+Au collisions with impact parameter $b=2~$fm (left panels), $b=6~$fm (middle panels) and $b=11~$fm (right panels). We compare the 3FH model result (black solid lines) with THESEUS (blue short-dashed lines) and THESEUS without UrQMD (red long-dashed lines). The results for the two-phase EoS (upper row) are compared to those for the crossover EoS (lower row). For noncentral collisions the curvature pattern is shifted towards positive values while the "wiggle" as a characteristic feature for the EoS with a first order phase transition remains rather robust.
000070306 8564_ $$s78612$$uhttp://inspirehep.net/record/1478995/files/Cy_pt_central.png$$y00017 (Color online) Energy scan for the curvature $C_y$ of the net proton rapidity distribution at midrapidity for central Au+Au collisions with impact parameter $b=2~$fm in different acceptance windows for the transverse momentum $p_T$. We compare the 3FH model result (black solid lines) with THESEUS (blue short-dashed lines) and THESEUS without UrQMD (red long-dashed lines). The results for the two-phase EoS (upper row) are compared to those for the crossover EoS (lower row). The "wiggle" as a characteristic feature for the EoS with a first order phase transition is rather robust against different acceptance cuts (see also Ref.~\cite{Ivanov:2015vna}) and hadronic final state interactions.
000070306 8564_ $$s1116937$$uhttp://inspirehep.net/record/1478995/files/arXiv:1608.00965.pdf
000070306 909CO $$ooai:inspirehep.net:1478995$$pINSPIRE:HEP
000070306 980__ $$aCORE
000070306 980__ $$aarXiv
000070306 980__ $$aCiteable
000070306 980__ $$aHEP
000070306 999C5 $$hG. S. F. Stephans$$o1$$sJ.Phys.G,32,S447$$y2006
000070306 999C5 $$hP. Seyboth$$m[NA49 Collaboration], Addendum-1 to the NA49 Proposal, CERNSPSC- 97-26$$o2
000070306 999C5 $$0439803$$hM. Gazdzicki$$o2$$rnucl-th/9701050
000070306 999C5 $$hM. Gazdzicki et al.$$m[NA61/SHINE Collaboration], PoS C POD2006 016$$o2$$y2006
000070306 999C5 $$0842952$$hB. Friman, (ed.), C. Hohne, (ed.), J. Knoll, (ed.), S. Leupold, (ed.), J. Randrup, (ed.), R. Rapp, (ed.) and P. Senger, (ed.)$$o3$$sLect.Notes Phys.,814,1$$y2011
000070306 999C5 $$0723674$$hA. N. Sissakian, A. S. Sorin and V. D. Toneev$$o4$$sConf.Proc.,C060726,421$$y2006
000070306 999C5 $$0679457$$hY. B. Ivanov, V. N. Russkikh and V. D. Toneev$$o5$$sPhys.Rev.,C73,044904$$y2006
000070306 999C5 $$01221060$$hB. Ivanov$$mYu$$o6$$sPhys.Rev.,C87,064904$$y2013
000070306 999C5 $$01202304$$hY. B. Ivanov$$o7$$sPhys.Lett.,B721,123$$y2013
000070306 999C5 $$01227380$$hY. B. Ivanov$$o8$$sPhys.Rev.,C87,064905$$y2013
000070306 999C5 $$01263078$$hY. B. Ivanov$$o9$$sPhys.Rev.,C89,024903$$y2014
000070306 999C5 $$01289892$$hV. P. Konchakovski, W. Cassing, Y. B. Ivanov and V. D. Toneev$$o10$$sPhys.Rev.,C90,014903$$y2014
000070306 999C5 $$01276729$$hY. B. Ivanov and A. A. Soldatov$$o11$$sPhys.Rev.,C91,024914$$y2015
000070306 999C5 $$01332768$$hY. B. Ivanov and A. A. Soldatov$$o12$$sPhys.Rev.,C91,024915$$y2015
000070306 999C5 $$01415594$$hY. B. Ivanov and A. A. Soldatov$$o13$$sEur.Phys.J.,A52,10$$y2016
000070306 999C5 $$0468266$$hS. A. Bass et al.$$o14$$sProg.Part.Nucl.Phys.,41,255$$y1998
000070306 999C5 $$0448052$$hC. M. Hung and E. V. Shuryak$$o15$$sPhys.Rev.,C57,1891$$y1998
000070306 999C5 $$01359795$$hY. B. Ivanov and D. Blaschke$$o16$$sPhys.Rev.,C92,024916$$y2015
000070306 999C5 $$0404436$$hL. P. Csernai and I. N. Mishustin$$o17$$sPhys.Rev.Lett.,74,5005$$y1995
000070306 999C5 $$0471209$$hE. E. Zabrodin, L. V. Bravina, L. P. Csernai, H. Stoecker and W. Greiner$$o18$$sPhys.Lett.,B423,373$$y1998
000070306 999C5 $$0586470$$hA. Keranen, J. Manninen, L. P. Csernai and V. Magas$$o19$$sPhys.Rev.,C67,034905$$y2003
000070306 999C5 $$hM. Nahrgang, C. Herold, S. Leupold, I. Mishustin and M. Bleicher$$o20$$sJ.Phys.G,40,055108$$y2013
000070306 999C5 $$0479125$$hI. N. Mishustin$$o21$$sPhys.Rev.Lett.,82,4779$$y1999
000070306 999C5 $$0816433$$hJ. Randrup$$o22$$sPhys.Rev.,C79,054911$$y2009
000070306 999C5 $$0860754$$hJ. Randrup$$o23$$sPhys.Rev.,C82,034902$$y2010
000070306 999C5 $$01185269$$hJ. Steinheimer and J. Randrup$$o24$$sPhys.Rev.Lett.,109,212301$$y2012
000070306 999C5 $$01209610$$hC. Herold, M. Nahrgang, I. Mishustin and M. Bleicher$$o25$$sPhys.Rev.,C87,014907$$y2013
000070306 999C5 $$01219120$$hJ. Steinheimer and J. Randrup$$o26$$sPhys.Rev.,C87,054903$$y2013
000070306 999C5 $$01229062$$hC. Herold, M. Nahrgang, I. Mishustin and M. Bleicher$$o27$$sNucl.Phys.,A925,14$$y2014
000070306 999C5 $$01263389$$hJ. Steinheimer, J. Randrup and V. Koch$$o28$$sPhys.Rev.,C89,034901$$y2014
000070306 999C5 $$01423084$$hM. Nahrgang and C. Herold$$o29$$rarXiv:1602.07223 [nucl-th]
000070306 999C5 $$0270869$$hI. N. Mishustin, V. N. Russkikh and L. M. Satarov$$o30$$sSov.J.Nucl.Phys.,48,454$$sYad.Fiz.,48,711$$y1988
000070306 999C5 $$0326005$$hI. N. Mishustin, V. N. Russkikh and L. M. Satarov$$o31$$sSov.J.Nucl.Phys.,54,260$$sYad.Fiz.,54,429$$y1991
000070306 999C5 $$0364583$$hU. Katscher, D. H. Rischke, J. A. Maruhn, W. Greiner, I. N. Mishustin and L. M. Satarov$$o32$$sZ.Phys.,A346,209$$y1993
000070306 999C5 $$0441208$$hJ. Brachmann, A. Dumitru, J. A. Maruhn, H. Stoecker, W. Greiner and D. H. Rischke$$o33$$sNucl.Phys.,A619,391$$y1997
000070306 999C5 $$0145202$$hV. M. Galitsky and I. N. Mishustin$$o34$$sYad.Fiz.,29,363$$y1979
000070306 999C5 $$0717748$$hA. S. Khvorostukin, V. V. Skokov, V. D. Toneev and K. Redlich$$o35$$sEur.Phys.J.,C48,531$$y2006
000070306 999C5 $$0710473$$hT. Klähn et al.$$o36$$sPhys.Rev.,C74,035802$$y2006
000070306 999C5 $$0592354$$hP. Danielewicz, R. Lacey and W. G. Lynch$$o37$$sScience,298,1592$$y2002
000070306 999C5 $$01405315$$hN. U. Bastian and D. Blaschke$$o38$$sJ.Phys.Conf.Ser.,668,012042$$y2016
000070306 999C5 $$0170243$$hA. S. Roshal and V. N. Russkikh$$o39$$sYad.Fiz.,33,1520$$y1981
000070306 999C5 $$hF. H. Harlow, A. A. Amsden, and J. R. Nix$$o40$$sJ.Comput.Phys.,20,119$$y1976
000070306 999C5 $$0732786$$hV. N. Russkikh$$mYu. B. Ivanov$$o41$$sPhys.Rev.,C76,054907$$y2007
000070306 999C5 $$hB. Ivanov, V. N. Russkikh$$mYu$$o42$$sYad.Fiz.,72,1288-1294$$y2009
000070306 999C5 $$01118440$$hP. Huovinen and H. Petersen$$o43$$sEur.Phys.J.,A48,171$$y2012
000070306 999C5 $$01343339$$hI. A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher$$o44$$sPhys.Rev.,C91,064901$$y2015
000070306 999C5 $$01263080$$hI. A. Karpenko, M. Bleicher, P. Huovinen and H. Petersen$$o45$$sJ.Phys.Conf.Ser.,503,012040$$y2014
000070306 999C5 $$hH. Petersen$$o46$$sJ.Phys.G,41,124005$$y2014
000070306 999C5 $$01257404$$hJ. Auvinen and H. Petersen$$o47$$sPhys.Rev.,C88,064908$$y2013
000070306 999C5 $$0527376$$hH. Liu et al.$$m[E895 Collaboration]$$o48$$sPhys.Rev.Lett.,84,5488$$y2000
000070306 999C5 $$01277069$$hL. Adamczyk et al.$$m[STAR Collaboration]$$o49$$sPhys.Rev.Lett.,112,162301$$y2014
000070306 999C5 $$0614470$$hC. Alt et al.$$m[NA49 Collaboration]$$o50$$sPhys.Rev.,C68,034903$$y2003
000070306 999C5 $$0362301$$hS. A. Bass, R. Mattiello, H. Stöcker, W. Greiner and C. Hartnack$$o51$$sPhys.Lett.,B302,381$$y1993
000070306 999C5 $$0896836$$hJ. Steinheimer and M. Bleicher$$o52$$sPhys.Rev.,C84,024905$$y2011
000070306 999C5 $$0841825$$hB. Ivanov$$mYu$$o53$$sPhys.Lett.,B690,358$$y2010
000070306 999C5 $$0884158$$hB. Ivanov$$mYu$$o54$$sPhys.Atom.Nucl.,75,621$$y2012
000070306 999C5 $$hS. P. Merts, S. V. Rasin and O. V. Rogachevsky$$mtalk at the Russian Academy of Sciences$$o55$$y2012
000070306 999C5 $$o55$$uhttp://mpd.jinr.ru/data/presentations/ras/merts.pdf
000070306 999C5 $$hN. Xu$$mprivate communication$$o56$$y2015
000070306 999C6 $$a0-0-0-1-0-0-1$$t2016-08-29 03:49:56$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44$$vcontent.pdf;2