000065968 001__ 65968
000065968 005__ 20141105111450.0
000065968 035__ $$9arXiv$$aoai:arXiv.org:1410.1797
000065968 035__ $$9INSPIRETeX$$aAbbon:2014aex
000065968 035__ $$9DESY$$zD14-kj42b
000065968 037__ $$9arXiv$$aarXiv:1410.1797$$cphysics.ins-det
000065968 100__ $$aAbbon, Ph.$$uDAPNIA, Saclay
000065968 245__ $$9arXiv$$aThe COMPASS Setup for Physics with Hadron Beams
000065968 246__ $$9arXiv$$aThe COMPASS Setup for Physics with Hadron Beams
000065968 269__ $$c2014-10-07
000065968 300__ $$a91
000065968 500__ $$9arXiv$$a91 pages, 101 figures and 7 tables
000065968 520__ $$9arXiv$$aThe main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.
000065968 540__ $$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
000065968 541__ $$aarxiv$$cOAI
000065968 65017 $$2arXiv$$aphysics.ins-det
000065968 65017 $$2INSPIRE$$aInstrumentation
000065968 65017 $$2arXiv$$ahep-ex
000065968 65017 $$2INSPIRE$$aExperiment-HEP
000065968 693__ $$eCERN-NA-058
000065968 695__ $$2INSPIRE$$adetector: design
000065968 695__ $$2INSPIRE$$aperformance
000065968 695__ $$2INSPIRE$$ahydrogen: liquid: target
000065968 695__ $$2INSPIRE$$anucleus: target
000065968 695__ $$2INSPIRE$$ahadron spectroscopy
000065968 695__ $$2INSPIRE$$asemiconductor detector: microstrip
000065968 695__ $$2INSPIRE$$asemiconductor detector: pixel
000065968 695__ $$2INSPIRE$$aMicromegas
000065968 695__ $$2INSPIRE$$agas electron multiplier
000065968 695__ $$2INSPIRE$$adrift chamber
000065968 695__ $$2INSPIRE$$aRICH
000065968 695__ $$2INSPIRE$$acalorimeter: electromagnetic
000065968 695__ $$2INSPIRE$$aelectronics: readout
000065968 695__ $$2INSPIRE$$adata acquisition
000065968 695__ $$2INSPIRE$$aFPGA
000065968 695__ $$2INSPIRE$$aparticle identification
000065968 695__ $$2INSPIRE$$anumerical calculations: Monte Carlo
000065968 695__ $$2INSPIRE$$aCOMPASS
000065968 695__ $$2INSPIRE$$aCERN SPS
000065968 700__ $$aAdolph, C.$$uErlangen - Nuremberg U.
000065968 700__ $$aAkhunzyanov, R.$$uDubna, JINR
000065968 700__ $$aAlexandrov, Yu.$$uLebedev Inst.
000065968 700__ $$aAlexeev, M.G.$$uTurin U.
000065968 700__ $$aAlexeev, G.D.$$uDubna, JINR
000065968 700__ $$aAmoroso, A.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aAndrieux, V.$$uDAPNIA, Saclay
000065968 700__ $$aAnosov, V.$$uDubna, JINR
000065968 700__ $$aAustregesilo, A.$$uCERN$$uMunich, Tech. U.
000065968 700__ $$aBadelek, B.$$uWarsaw U.
000065968 700__ $$aBalestra, F.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aBarth, J.$$uBonn U.
000065968 700__ $$aBaum, G.$$uBielefeld U.
000065968 700__ $$aBeck, R.$$uBonn U., HISKP
000065968 700__ $$aBedfer, Y.$$uDAPNIA, Saclay
000065968 700__ $$aBerlin, A.$$uRuhr U., Bochum
000065968 700__ $$aBernhard, J.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aBicker, K.$$uCERN$$uMunich, Tech. U.
000065968 700__ $$aBielert, E.R.$$uCERN
000065968 700__ $$aBieling, J.$$uBonn U.
000065968 700__ $$aBirsa, R.$$uINFN, Trieste
000065968 700__ $$aBisplinghoff, J.$$uBonn U., HISKP
000065968 700__ $$aBodlak, M.$$uCharles U.
000065968 700__ $$aBoer, M.$$uDAPNIA, Saclay
000065968 700__ $$aBordalo, P.$$uLisbon, LIFEP$$uLisbon, IST
000065968 700__ $$aBradamante, F.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aBraun, C.$$uErlangen - Nuremberg U.
000065968 700__ $$aBressan, A.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aBuchele, M.$$uFreiburg U.
000065968 700__ $$aBurtin, E.$$uDAPNIA, Saclay
000065968 700__ $$aCapozza, L.$$uDAPNIA, Saclay
000065968 700__ $$aCiliberti, P.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aChiosso, M.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aChung, S.U.$$uMunich, Tech. U.$$uPusan Natl. U.$$uBrookhaven
000065968 700__ $$aCicuttin, A.$$uICTP, Trieste$$uINFN, Trieste
000065968 700__ $$aColantoni, M.$$uINFN, Turin
000065968 700__ $$aCotte, D.$$uCERN
000065968 700__ $$aCrespo, M.L.$$uICTP, Trieste$$uINFN, Trieste
000065968 700__ $$aCuriel, Q.$$uDAPNIA, Saclay
000065968 700__ $$aDafni, T.$$uDAPNIA, Saclay
000065968 700__ $$aDalla Torre, S.$$uINFN, Trieste
000065968 700__ $$aDasgupta, S.S.$$uMatrivani Inst., Calcutta
000065968 700__ $$aDasgupta, S.$$uINFN, Trieste
000065968 700__ $$aDenisov, O.Yu.$$uINFN, Turin
000065968 700__ $$aDesforge, D.$$uDAPNIA, Saclay
000065968 700__ $$aDinkelbach, A.M.$$uMunich, Tech. U.
000065968 700__ $$aDonskov, S.V.$$uKurchatov Inst., Moscow
000065968 700__ $$aDoshita, N.$$uYamagata U.
000065968 700__ $$aDuic, V.$$uTrieste U.
000065968 700__ $$aDunnweber, W.$$uMunich U.
000065968 700__ $$aDurand, D.$$uDAPNIA, Saclay
000065968 700__ $$aDziewiecki, M.$$uWarsaw U. of Tech.
000065968 700__ $$aEfremov, A.$$uDubna, JINR
000065968 700__ $$aElia, C.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aEversheim, P.D.$$uBonn U., HISKP
000065968 700__ $$aEyrich, W.$$uErlangen - Nuremberg U.
000065968 700__ $$aFaessler, M.$$uMunich U.
000065968 700__ $$aFerrero, A.$$uDAPNIA, Saclay
000065968 700__ $$aFinger, M.$$uCharles U.
000065968 700__ $$aM. Finger jr$$uCharles U.
000065968 700__ $$aFischer, H.$$uFreiburg U.
000065968 700__ $$aFranco, C.$$uLisbon, LIFEP
000065968 700__ $$avon Hohenesche, N. du Fresne$$uMainz U., Inst. Kernphys.$$uCERN
000065968 700__ $$aFriedrich, J.M.$$uMunich, Tech. U.
000065968 700__ $$aFrolov, V.$$uCERN
000065968 700__ $$aGatignon, L.$$uCERN
000065968 700__ $$aGautheron, F.$$uRuhr U., Bochum
000065968 700__ $$aGavrichtchouk, O.P.$$uDubna, JINR
000065968 700__ $$aGerassimov, S.$$uLebedev Inst.$$uMunich, Tech. U.
000065968 700__ $$aGeyer, R.$$uMunich U.
000065968 700__ $$aGiganon, A.$$uDAPNIA, Saclay
000065968 700__ $$aGnesi, I.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aGobbo, B.$$uINFN, Trieste
000065968 700__ $$aGoertz, S.$$uBonn U.
000065968 700__ $$aGorzellik, M.$$uFreiburg U.
000065968 700__ $$aGrabmuller, S.$$uMunich, Tech. U.
000065968 700__ $$aGrasso, A.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aGregori, M.$$uINFN, Trieste
000065968 700__ $$aGrube, B.$$uMunich, Tech. U.
000065968 700__ $$aGrussenmeyer, T.$$uFreiburg U.
000065968 700__ $$aGuskov, A.$$uDubna, JINR
000065968 700__ $$aHaas, F.$$uMunich, Tech. U.
000065968 700__ $$avon Harrach, D.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aHahne, D.$$uBonn U.
000065968 700__ $$aHashimoto, R.$$uYamagata U.
000065968 700__ $$aHeinsius, F.H.$$uFreiburg U.
000065968 700__ $$aHerrmann, F.$$uFreiburg U.
000065968 700__ $$aHinterberger, F.$$uBonn U., HISKP
000065968 700__ $$aHoppner, Ch.$$uMunich, Tech. U.
000065968 700__ $$aHorikawa, N.$$uNagoya U.$$uChubu U.
000065968 700__ $$ad'Hose, N.$$uDAPNIA, Saclay
000065968 700__ $$aHuber, S.$$uMunich, Tech. U.
000065968 700__ $$aIshimoto, S.$$uYamagata U.$$uKEK, Tsukuba
000065968 700__ $$aIvanov, A.$$uDubna, JINR
000065968 700__ $$aIvanshin, Yu.$$uDubna, JINR
000065968 700__ $$aIwata, T.$$uYamagata U.
000065968 700__ $$aJahn, R.$$uBonn U., HISKP
000065968 700__ $$aJary, V.$$uPrague, Tech. U.
000065968 700__ $$aJasinski, P.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aJorg, P.$$uFreiburg U.
000065968 700__ $$aJoosten, R.$$uBonn U., HISKP
000065968 700__ $$aKabuss, E.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aKetzer, B.$$uMunich, Tech. U.$$uBonn U.
000065968 700__ $$aKhaustov, G.V.$$uKurchatov Inst., Moscow
000065968 700__ $$aKhokhlov, Yu. A.$$uKurchatov Inst., Moscow$$uMoscow, MIPT
000065968 700__ $$aKisselev, Yu.$$uDubna, JINR
000065968 700__ $$aKlein, F.$$uBonn U.
000065968 700__ $$aKlimaszewski, K.$$uNCBJ, Swierk
000065968 700__ $$aKoivuniemi, J.H.$$uRuhr U., Bochum
000065968 700__ $$aKolosov, V.N.$$uKurchatov Inst., Moscow
000065968 700__ $$aKondo, K.$$uYamagata U.
000065968 700__ $$aKonigsmann, K.$$uFreiburg U.
000065968 700__ $$aKonorov, I.$$uLebedev Inst.$$uMunich, Tech. U.
000065968 700__ $$aKonstantinov, V.F.$$uKurchatov Inst., Moscow
000065968 700__ $$aKotzinian, A.M.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aKouznetsov, O.$$uDubna, JINR
000065968 700__ $$aKramer, M.$$uMunich, Tech. U.
000065968 700__ $$aKroumchtein, Z.V.$$uDubna, JINR
000065968 700__ $$aKuchinski, N.$$uDubna, JINR
000065968 700__ $$aKuhn, R.$$uMunich, Tech. U.
000065968 700__ $$aKunne, F.$$uDAPNIA, Saclay
000065968 700__ $$aKurek, K.$$uNCBJ, Swierk
000065968 700__ $$aKurjata, R.P.$$uWarsaw U. of Tech.
000065968 700__ $$aLednev, A.A.$$uKurchatov Inst., Moscow
000065968 700__ $$aLehmann, A.$$uErlangen - Nuremberg U.
000065968 700__ $$aLevillain, M.$$uDAPNIA, Saclay
000065968 700__ $$aLevorato, S.$$uINFN, Trieste
000065968 700__ $$aLichtenstadt, J.$$uTel Aviv U.
000065968 700__ $$aMaggiora, A.$$uINFN, Turin
000065968 700__ $$aMagnon, A.$$uDAPNIA, Saclay
000065968 700__ $$aMakke, N.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aMallot, G.K.$$uCERN
000065968 700__ $$aMarchand, C.$$uDAPNIA, Saclay
000065968 700__ $$aMarroncle, J.$$uDAPNIA, Saclay
000065968 700__ $$aMartin, A.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aMarzec, J.$$uWarsaw U. of Tech.
000065968 700__ $$aMatousek, J.$$uCharles U.
000065968 700__ $$aMatsuda, H.$$uYamagata U.
000065968 700__ $$aMatsuda, T.$$uMiyazaki U.
000065968 700__ $$aMenon, G.$$uINFN, Trieste
000065968 700__ $$aMeshcheryakov, G.$$uDubna, JINR
000065968 700__ $$aMeyer, W.$$uRuhr U., Bochum
000065968 700__ $$aMichigami, T.$$uYamagata U.
000065968 700__ $$aMikhailov, Yu. V.$$uKurchatov Inst., Moscow
000065968 700__ $$aMiyachi, Y.$$uYamagata U.
000065968 700__ $$aMoinester, M.A.$$uTel Aviv U.
000065968 700__ $$aNagaytsev, A.$$uDubna, JINR
000065968 700__ $$aNagel, T.$$uMunich, Tech. U.
000065968 700__ $$aNerling, F.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aNeubert, S.$$uMunich, Tech. U.
000065968 700__ $$aNeyret, D.$$uDAPNIA, Saclay
000065968 700__ $$aNikolaenko, V.I.$$uKurchatov Inst., Moscow
000065968 700__ $$aNovy, J.$$uPrague, Tech. U.
000065968 700__ $$aNowak, W.D.$$uFreiburg U.
000065968 700__ $$aNunes, A.S.$$uLisbon, LIFEP
000065968 700__ $$aOlshevsky, A.G.$$uDubna, JINR
000065968 700__ $$aOrlov, I.$$uDubna, JINR
000065968 700__ $$aOstrick, M.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aPanknin, R.$$uBonn U.
000065968 700__ $$aPanzieri, D.$$uPiemonte Orientale U., Alessandria$$uINFN, Turin
000065968 700__ $$aParsamyan, B.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aPaul, S.$$uMunich, Tech. U.
000065968 700__ $$aPesaro, G.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aPesaro, V.$$uCERN
000065968 700__ $$aPeshekhonov, D.V.$$uDubna, JINR
000065968 700__ $$aPires, C.$$uLisbon, LIFEP
000065968 700__ $$aPlatchkov, S.$$uDAPNIA, Saclay
000065968 700__ $$aPochodzalla, J.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aPolyakov, V.A.$$uKurchatov Inst., Moscow
000065968 700__ $$aPretz, J.$$uBonn U.$$uAachen, Tech. Hochsch.
000065968 700__ $$aQuaresma, M.$$uLisbon, LIFEP
000065968 700__ $$aQuintans, C.$$uLisbon, LIFEP
000065968 700__ $$aRamos, S.$$uLisbon, LIFEP$$uLisbon, IST
000065968 700__ $$aRegali, C.$$uFreiburg U.
000065968 700__ $$aReicherz, G.$$uRuhr U., Bochum
000065968 700__ $$aReymond, J-M.$$uDAPNIA, Saclay
000065968 700__ $$aRocco, E.$$uCERN
000065968 700__ $$aRossiyskaya, N.S.$$uDubna, JINR
000065968 700__ $$aRousse, J.Y.$$uDAPNIA, Saclay
000065968 700__ $$aRyabchikov, D.I.$$uKurchatov Inst., Moscow
000065968 700__ $$aRychter, A.$$uWarsaw U. of Tech.
000065968 700__ $$aSamartsev, A.$$uDubna, JINR
000065968 700__ $$aSamoylenko, V.D.$$uKurchatov Inst., Moscow
000065968 700__ $$aSandacz, A.$$uNCBJ, Swierk
000065968 700__ $$aSarkar, S.$$uMatrivani Inst., Calcutta
000065968 700__ $$aSavin, I.A.$$uDubna, JINR
000065968 700__ $$aSbrizzai, G.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aSchiavon, P.$$uTrieste U.$$uINFN, Trieste
000065968 700__ $$aSchill, C.$$uFreiburg U.
000065968 700__ $$aSchluter, T.$$uMunich U.
000065968 700__ $$aSchmidt, K.$$uFreiburg U.
000065968 700__ $$aSchmieden, H.$$uBonn U.
000065968 700__ $$aSchonning, K.$$uCERN
000065968 700__ $$aSchopferer, S.$$uFreiburg U.
000065968 700__ $$aSchott, M.$$uCERN
000065968 700__ $$aShevchenko, O.Yu.$$uDubna, JINR
000065968 700__ $$aSilva, L.$$uLisbon, LIFEP
000065968 700__ $$aSinha, L.$$uMatrivani Inst., Calcutta
000065968 700__ $$aSirtl, S.$$uFreiburg U.
000065968 700__ $$aSlunecka, M.$$uDubna, JINR
000065968 700__ $$aSosio, S.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aSozzi, F.$$uINFN, Trieste
000065968 700__ $$aSrnka, A.$$uInst. Sci. Instruments, Brno
000065968 700__ $$aSteiger, L.$$uINFN, Trieste
000065968 700__ $$aStolarski, M.$$uLisbon, LIFEP
000065968 700__ $$aSulc, M.$$uLiberec Tech. U.
000065968 700__ $$aSulej, R.$$uNCBJ, Swierk
000065968 700__ $$aSuzuki, H.$$uYamagata U.$$uChubu U.
000065968 700__ $$aSzabelski, A.$$uNCBJ, Swierk
000065968 700__ $$aSzameitat, T.$$uFreiburg U.
000065968 700__ $$aSznajder, P.$$uNCBJ, Swierk
000065968 700__ $$aTakekawa, S.$$uTurin U.$$uINFN, Turin
000065968 700__ $$aWolbeek, J. ter$$uFreiburg U.
000065968 700__ $$aTessaro, S.$$uINFN, Trieste
000065968 700__ $$aTessarotto, F.$$uINFN, Trieste
000065968 700__ $$aThibaud, F.$$uDAPNIA, Saclay
000065968 700__ $$aTskhay, V.$$uLebedev Inst.
000065968 700__ $$aUhl, S.$$uMunich, Tech. U.
000065968 700__ $$aUman, I.$$uMunich U.
000065968 700__ $$aVirius, M.$$uPrague, Tech. U.
000065968 700__ $$aWang, L.$$uRuhr U., Bochum
000065968 700__ $$aWeisrock, T.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aWeitzel, Q.$$uMunich, Tech. U.
000065968 700__ $$aWilfert, M.$$uMainz U., Inst. Kernphys.
000065968 700__ $$aWindmolders, R.$$uBonn U.
000065968 700__ $$aWollny, H.$$uDAPNIA, Saclay
000065968 700__ $$aZaremba, K.$$uWarsaw U. of Tech.
000065968 700__ $$aZavertyaev, M.$$uLebedev Inst.
000065968 700__ $$aZemlyanichkina, E.$$uDubna, JINR
000065968 700__ $$aZiembicki, M.$$uWarsaw U. of Tech.
000065968 700__ $$aZink, A.$$uErlangen - Nuremberg U.
000065968 710__ $$gCOMPASS Collaboration
000065968 8564_ $$s10010$$uhttp://inspirehep.net/record/1320774/files/fig_s04_014.png$$y00015 \small Momentum resolution of the RPD for protons detected at an angle of $70^\circ$ relative to the beam axis.
000065968 8564_ $$s100630$$uhttp://inspirehep.net/record/1320774/files/fig_s09_083b.png$$y00097 Difference between reconstructed and nominal $\pi^0$ masses as a function of the impact position for the ECAL2 modules for (left) before $\pi^0$ calibration and (right) after $\pi^0$ calibration. The difference is calculated using the mean value of the fitted (with a Gaussian) X-projection of $E_{\gamma}$ vs $(M_{\gamma \gamma}-M_{\pi^0})$ histograms. The grey rows at the top and bottom ends and on the right side of ECAL2 are located beyond the angular acceptance for photons coming from the target (see \secref{sec:pid.ecal.ecal2}.)
000065968 8564_ $$s103273$$uhttp://inspirehep.net/record/1320774/files/fig_s09_069.png$$y00076 Vertex distributions for the liquid hydrogen target ($xy$ projection) for events with three charged tracks.
000065968 8564_ $$s10954$$uhttp://inspirehep.net/record/1320774/files/fig_s09_079b.png$$y00089 Shower reconstruction: (left) fraction of total shower energy collected from $-\infty$ up to a particular distance from the shower center (Eq.~\ref{eq:reconstruction.ecal.showerprofile1D}); (right) fraction of the total energy deposited in a column as a function of its distance from the shower center.
000065968 8564_ $$s110885$$uhttp://inspirehep.net/record/1320774/files/fig_s09_083a.png$$y00096 Difference between reconstructed and nominal $\pi^0$ masses as a function of the impact position for the ECAL2 modules for (left) before $\pi^0$ calibration and (right) after $\pi^0$ calibration. The difference is calculated using the mean value of the fitted (with a Gaussian) X-projection of $E_{\gamma}$ vs $(M_{\gamma \gamma}-M_{\pi^0})$ histograms. The grey rows at the top and bottom ends and on the right side of ECAL2 are located beyond the angular acceptance for photons coming from the target (see \secref{sec:pid.ecal.ecal2}.)
000065968 8564_ $$s112831$$uhttp://inspirehep.net/record/1320774/files/fig_s09_070.png$$y00077 Vertex distributions for the liquid hydrogen target ($xz$ projection) for events with three charged tracks. For the explanation of the structures, see also \Figref{fig:targets.lh2.pic2}.
000065968 8564_ $$s118710$$uhttp://inspirehep.net/record/1320774/files/fig_s09_081a.png$$y00092 Energy deposition in two ECAL2 modules as a function of the difference between reconstructed and nominal $\pi^0$ mass for (left) a module with typical behaviour and (right) a module with an unusual behaviour.
000065968 8564_ $$s1236119$$uhttp://inspirehep.net/record/1320774/files/fig_s05_026.png$$y00027 Front-end card carrying (from top to bottom) the 130-pin connector, the protection network, a ceramic pitch adaptor, and the APV25-S1 ASIC for analog sampling of the signals induced on the readout electrodes.
000065968 8564_ $$s12403$$uhttp://inspirehep.net/record/1320774/files/fig_s05_038.png$$y00041 Resolution of the reconstructed Cherenkov ring for pions as a function of the track angle. The two different trends in the curve below and above $\sim 175\,\mrad$ are due to the different RICH-1 photon detector types (see \secref{sec:pid.rich1}).
000065968 8564_ $$s12439$$uhttp://inspirehep.net/record/1320774/files/fig_s07_058.png$$y00064 Efficiency of the ECAL2 trigger as a function of the energy. The solid line is a fit to the data with an error function.
000065968 8564_ $$s128281$$uhttp://inspirehep.net/record/1320774/files/fig_s04_016.png$$y00017 Sketch of the Sandwich veto detector. The active area of the detector (depicted in grey) has dimensions of 200$\times 200\,\Cm^2$.
000065968 8564_ $$s129324$$uhttp://inspirehep.net/record/1320774/files/fig_s09_067a.png$$y00073 Distribution of scattering angle of the outgoing pion vs the position of primary vertex along the beam axis from Primakoff data, illustrating the improvement of the vertex resolution between (left) standard alignment and (right) run-by-run alignment. The structures correspond to interactions in the different targets used in the measurement (see Table~\ref{tab:target.overview}) and in the first Silicon station downstream of the targets.
000065968 8564_ $$s13032$$uhttp://inspirehep.net/record/1320774/files/fig_s06_042.png$$y00046 Mean number of detected photons per reconstructed ring as a function of the corresponding Cherenkov angle $\theta_\mathrm{Ch}$ in the central region of the RICH-1 detector for track angles $\theta$ between $30\,\mrad$ and $90\,\mrad$. The line is a fit with the functional form $N=N_0$sin$^2(\theta_\mathrm{Ch})$.
000065968 8564_ $$s13063$$uhttp://inspirehep.net/record/1320774/files/fig_s06_041.png$$y00045 Horizontal axis projection of the integrated hit distributions for the lower photon detectors. Both central and peripheral parts of RICH-1 are included. The shaded histogram refers to the muon environment, the open to the hadron one. The small dips in the hit distributions correspond to the dead zones between the detector parts equipped with MAPMTs and with MWPCs.
000065968 8564_ $$s13316$$uhttp://inspirehep.net/record/1320774/files/fig_s02_004.png$$y00005 Side view of the target region with the liquid hydrogen target system.
000065968 8564_ $$s139475$$uhttp://inspirehep.net/record/1320774/files/fig_s05_022.png$$y00023 Two-dimensional efficiency distribution for a plane in the beam telescope. The stereo-angle tilt of the sensitive area is visible.
000065968 8564_ $$s14014$$uhttp://inspirehep.net/record/1320774/files/fig_s09_080b.png$$y00091 ECAL2 fit results for (left) number of modules per cluster and (right) number of fitted showers per cluster.
000065968 8564_ $$s141057$$uhttp://inspirehep.net/record/1320774/files/fig_s07_054.png$$y00060 Allowed combinations for target pointing in the RPD part of the proton trigger.
000065968 8564_ $$s14668$$uhttp://inspirehep.net/record/1320774/files/fig_s06_046.png$$y00051 Configuration of ECAL2. The outer and intermediate regions are equipped with GAMS and radiation-hardened GAMS modules respectively. The inner region is equipped with Shashlik sampling modules. The transverse sizes of all three types of modules are identical. The central hole of $2\times 2$ modules can be seen as a white spot.
000065968 8564_ $$s14709$$uhttp://inspirehep.net/record/1320774/files/fig_s05_034.png$$y00037 Sketch of a Mini Drift Tube module.
000065968 8564_ $$s14789$$uhttp://inspirehep.net/record/1320774/files/fig_s05_036.png$$y00039 Schematic view of the Rich Wall readout chain.
000065968 8564_ $$s1483$$uhttp://inspirehep.net/record/1320774/files/fig_s01_001b.png$$y00001 Production mechanisms employed in COMPASS for (left) diffractive dissociation, (middle) central production, (right) photo-production by quasi-real photons $\gamma$, with $\pi$ denoting the beam particle (can be also $p$, $K$), and $N$ the target nucleon or nucleus.
000065968 8564_ $$s14966$$uhttp://inspirehep.net/record/1320774/files/fig_s03_011.png$$y00012 Count rate of coincident events recorded with CEDAR1 and CEDAR2. The pressure of CEDAR2 was scanned while CEDAR1 was set to detect kaons.
000065968 8564_ $$s15261$$uhttp://inspirehep.net/record/1320774/files/fig_s04_012.png$$y00013 Side view of the liquid hydrogen target system. A closer view of the cylindrical Mylar cell and hydrogen piping is shown in the inset.
000065968 8564_ $$s15310$$uhttp://inspirehep.net/record/1320774/files/fig_s09_080a.png$$y00090 ECAL2 fit results for (left) number of modules per cluster and (right) number of fitted showers per cluster.
000065968 8564_ $$s159611$$uhttp://inspirehep.net/record/1320774/files/fig_s09_073.png$$y00080 Momentum transfer correlation between the recoil proton detected in the RPD and the scattered proton detected in the spectrometer.
000065968 8564_ $$s16037$$uhttp://inspirehep.net/record/1320774/files/fig_s06_050a.png$$y00055 ECAL2 module responses as monitored during a period of one week for (left) a stable module and (right) an unstable module. The vertical scale is normalised to the SADC charge measured in the beginning of the period.
000065968 8564_ $$s16500$$uhttp://inspirehep.net/record/1320774/files/fig_s06_050b.png$$y00056 ECAL2 module responses as monitored during a period of one week for (left) a stable module and (right) an unstable module. The vertical scale is normalised to the SADC charge measured in the beginning of the period.
000065968 8564_ $$s16514$$uhttp://inspirehep.net/record/1320774/files/fig_s07_051.png$$y00057 Arrangement of trigger elements in the spectrometer (schematic side view, not to scale).
000065968 8564_ $$s166051$$uhttp://inspirehep.net/record/1320774/files/fig_s09_088b.png$$y00104 Simulated photon efficiency (left) as a function of the photon energy and (right) as a function of the photon direction in the laboratory system.
000065968 8564_ $$s1690709$$uhttp://inspirehep.net/record/1320774/files/fig_s07_056.png$$y00062 The multiplicity counter. All dimensions are in mm.
000065968 8564_ $$s16924$$uhttp://inspirehep.net/record/1320774/files/fig_s10_092b.png$$y00111 Acceptance for the diffractively produced $\pi^-\pi^0\pi^0$ final state (left)~as a function of the $3\pi$ invariant mass and (right)~as a function of the polar angle of the $\pi^0\pi^0$ isobar in the Gottfried-Jackson frame.
000065968 8564_ $$s1705969$$uhttp://inspirehep.net/record/1320774/files/fig_s06_048.png$$y00053 VME carrier card with four mounted MSADC modules.
000065968 8564_ $$s17504$$uhttp://inspirehep.net/record/1320774/files/fig_s06_045a.png$$y00049 ECAL1 module responses as monitored during a period of one week for (left) a stable module and (right) an unstable module. The vertical scale is normalised to the SADC charge measured in the beginning of the period.
000065968 8564_ $$s17633$$uhttp://inspirehep.net/record/1320774/files/fig_s10_092a.png$$y00110 Acceptance for the diffractively produced $\pi^-\pi^0\pi^0$ final state (left)~as a function of the $3\pi$ invariant mass and (right)~as a function of the polar angle of the $\pi^0\pi^0$ isobar in the Gottfried-Jackson frame.
000065968 8564_ $$s179272$$uhttp://inspirehep.net/record/1320774/files/fig_s04_015.png$$y00016 \small Energy loss $\Delta E$ in the outer ring of the RPD as a function of the velocity of the particle in elastic pp scattering.
000065968 8564_ $$s18050$$uhttp://inspirehep.net/record/1320774/files/fig_s09_076b.png$$y00084 Identification efficiency and mis-identification probabilities as a function of the particle momentum for (left) a pion sample and (right) a kaon sample.
000065968 8564_ $$s18061$$uhttp://inspirehep.net/record/1320774/files/fig_s09_076a.png$$y00083 Identification efficiency and mis-identification probabilities as a function of the particle momentum for (left) a pion sample and (right) a kaon sample.
000065968 8564_ $$s18298$$uhttp://inspirehep.net/record/1320774/files/fig_s09_072.png$$y00079 Correlation between the azimuthal angles of the recoil proton detected in the RPD and the scattered proton detected in the spectrometer.
000065968 8564_ $$s18360$$uhttp://inspirehep.net/record/1320774/files/fig_s10_090b.png$$y00107 Acceptance for the diffractively produced $\pi^-\pi^+\pi^-$ final state (left)~as a function of the $3\pi$ invariant mass and (right)~as a function of the polar angle of the $\pi^+\pi^-$ isobar in the Gottfried-Jackson frame.
000065968 8564_ $$s18543$$uhttp://inspirehep.net/record/1320774/files/fig_s06_045b.png$$y00050 ECAL1 module responses as monitored during a period of one week for (left) a stable module and (right) an unstable module. The vertical scale is normalised to the SADC charge measured in the beginning of the period.
000065968 8564_ $$s18728$$uhttp://inspirehep.net/record/1320774/files/fig_s10_100b.png$$y00126 Invariant mass spectra for (left) $\pi^-\pi^+\pi^0$ and (right) $\pi^-\pi^+\eta$ systems. The full line in the left panel is a fit to the $\omega$ peak only; the dashed line includes also the background.
000065968 8564_ $$s18920$$uhttp://inspirehep.net/record/1320774/files/fig_s10_099c.png$$y00123 Reconstructed invariant masses for charged particles in the final state. The peaks shown are for (top left) $K^0_S(498)$, (top right) $\phi(1020)$, (bottom left) $\Lambda(1115)$, and (bottom right) $\Xi^\pm$. The $K^0_S$, $\Lambda$, and $\Xi^\pm$ particles are produced in inclusive reactions. The dashed curve in the $\phi(1020)$ plot is a fit to the background.
000065968 8564_ $$s18954$$uhttp://inspirehep.net/record/1320774/files/fig_s06_039.png$$y00042 A typical event display during hadron data taking. The 16 squares represent the detector areas; the four central ones are equipped with MAPMTs. The small squares represent the hits detected in the photon detectors.
000065968 8564_ $$s19223$$uhttp://inspirehep.net/record/1320774/files/fig_s10_099a.png$$y00121 Reconstructed invariant masses for charged particles in the final state. The peaks shown are for (top left) $K^0_S(498)$, (top right) $\phi(1020)$, (bottom left) $\Lambda(1115)$, and (bottom right) $\Xi^\pm$. The $K^0_S$, $\Lambda$, and $\Xi^\pm$ particles are produced in inclusive reactions. The dashed curve in the $\phi(1020)$ plot is a fit to the background.
000065968 8564_ $$s19846$$uhttp://inspirehep.net/record/1320774/files/fig_s09_088a.png$$y00103 Simulated photon efficiency (left) as a function of the photon energy and (right) as a function of the photon direction in the laboratory system.
000065968 8564_ $$s20057$$uhttp://inspirehep.net/record/1320774/files/fig_s07_059.png$$y00065 Time resolution of the CFD algorithm for a representative cell in the centre and signal amplitudes above 800 MeV.
000065968 8564_ $$s201357$$uhttp://inspirehep.net/record/1320774/files/fig_s05_017.png$$y00018 The conical cryostat with the upstream beam window dismounted. The height of the (green) PCB frame that holds the detector (sensor) is about $100\,\mm$, the length of the full cryostat about $400\,\mm$. The bent cooling capillary is fixed to the PCB close to the sensitive area of the detector. Inside the cryostat, the readout cables are directly soldered to the detector module and plugged to vacuum-sealed feedthrough connectors also visible on the outer surface of the cryostat.
000065968 8564_ $$s20254$$uhttp://inspirehep.net/record/1320774/files/fig_s07_053.png$$y00059 Time residual of the beam trigger.
000065968 8564_ $$s20349$$uhttp://inspirehep.net/record/1320774/files/fig_s05_031.png$$y00034 Space residual distribution of a Micromegas detector. The quoted residual width is obtained from a fit of a sum of two Gaussians.
000065968 8564_ $$s205797$$uhttp://inspirehep.net/record/1320774/files/fig_s05_032.png$$y00035 Two-dimensional representation of the efficiency for one of DC4 layers. The half horizontal lines with reduced efficiency indicate the position of the power supply lines of the beam killer.
000065968 8564_ $$s20625$$uhttp://inspirehep.net/record/1320774/files/fig_s10_090a.png$$y00106 Acceptance for the diffractively produced $\pi^-\pi^+\pi^-$ final state (left)~as a function of the $3\pi$ invariant mass and (right)~as a function of the polar angle of the $\pi^+\pi^-$ isobar in the Gottfried-Jackson frame.
000065968 8564_ $$s21197$$uhttp://inspirehep.net/record/1320774/files/fig_s05_028b.png$$y00031 Time residual distribution (difference between measured cluster time and track time) for (left) the pixel region and (right) the strip region ($x$-direction) of a PixelGEM detector.
000065968 8564_ $$s21313$$uhttp://inspirehep.net/record/1320774/files/fig_s10_099d.png$$y00124 Reconstructed invariant masses for charged particles in the final state. The peaks shown are for (top left) $K^0_S(498)$, (top right) $\phi(1020)$, (bottom left) $\Lambda(1115)$, and (bottom right) $\Xi^\pm$. The $K^0_S$, $\Lambda$, and $\Xi^\pm$ particles are produced in inclusive reactions. The dashed curve in the $\phi(1020)$ plot is a fit to the background.
000065968 8564_ $$s21743$$uhttp://inspirehep.net/record/1320774/files/fig_s10_093a.png$$y00112 Energy balance between outgoing and incoming particles for (left) diffractive dissociation with three charged pions in the final state and (right) for Primakoff scattering.
000065968 8564_ $$s22159$$uhttp://inspirehep.net/record/1320774/files/fig_s05_027b.png$$y00029 Residual distribution (difference between measured cluster position and track penetration point) in $x$-direction for (left) the pixel region and (right) the strip region of a PixelGEM detector. The quoted residual widths are obtained from fits of a sum of two Gaussians. When corrected for the track uncertainties, spatial resolutions of $106\,\mum$ (pixels) and $54\,\mum$ (strips) are obtained for this particular detector.
000065968 8564_ $$s22286$$uhttp://inspirehep.net/record/1320774/files/fig_s10_094.png$$y00114 Squared four-momentum transfer for $\pi^-\pi^+\pi^-$ events produced by a pion beam impinging on a liquid hydrogen target, and selected by the DT0 trigger.
000065968 8564_ $$s22394$$uhttp://inspirehep.net/record/1320774/files/fig_s08_062.png$$y00068 \small Data acquisition dead time for three different TCS settings, as measured as a function of the attempted trigger rate. The settings used in 2008/2009 are shown in red triangles.
000065968 8564_ $$s22404$$uhttp://inspirehep.net/record/1320774/files/fig_s09_087a.png$$y00101 Difference between beam and measured energies (energy balance) for Primakoff-Compton scattering (left) with a muon beam and (right) with a pion beam. The distributions are displayed with the standard $\pi^0$ calibration only (dashed curve) and with linearity and intra-cell position corrections (solid curve); the corresponding RMS$_1$ and RMS$_2$ values are indicated.
000065968 8564_ $$s22514$$uhttp://inspirehep.net/record/1320774/files/fig_s09_064.png$$y00070 Efficiency of tracking and vertexing as a function of momentum with the efficiency of tracking software (red, solid line), setup efficiency (hatched, green area), and overall efficiency (crossed, blue area).
000065968 8564_ $$s22587$$uhttp://inspirehep.net/record/1320774/files/fig_s05_019.png$$y00020 Block diagram of the conical cryostat (CC), symbols as in Fig.~\ref{fig:tracking.SI_valvebox_schematics}. The phase separator is mounted in an extra housing outside the spectrometer acceptance with a vacuum connection to the cryostat.
000065968 8564_ $$s22742$$uhttp://inspirehep.net/record/1320774/files/fig_s09_087b.png$$y00102 Difference between beam and measured energies (energy balance) for Primakoff-Compton scattering (left) with a muon beam and (right) with a pion beam. The distributions are displayed with the standard $\pi^0$ calibration only (dashed curve) and with linearity and intra-cell position corrections (solid curve); the corresponding RMS$_1$ and RMS$_2$ values are indicated.
000065968 8564_ $$s22875$$uhttp://inspirehep.net/record/1320774/files/fig_s10_091b.png$$y00109 Acceptance for the diffractively produced $K^-\pi^+\pi^-$ final state (left)~as a function of the $K\pi\pi$ invariant mass, and (right)~as a function of the polar angle of the $\pi^+K^-$ isobar in the Gottfried-Jackson frame.
000065968 8564_ $$s23005$$uhttp://inspirehep.net/record/1320774/files/fig_s10_097b.png$$y00118 Momentum transfer distributions for exclusive (left) $\pi^-\gamma$ and (right) $\mu^-\gamma$ events. The data (dotted lines) are compared to the MC simulation (solid lines).
000065968 8564_ $$s2301221$$uhttp://inspirehep.net/record/1320774/files/fig_s05_024.png$$y00025 The PixelGEM read-out foil. The inner $10\times 10\,\Cm^2$ darkest part is the active area. The symmetric wires connecting the pads and the strips to the read-out electronics surround this part.
000065968 8564_ $$s23181$$uhttp://inspirehep.net/record/1320774/files/fig_s05_028a.png$$y00030 Time residual distribution (difference between measured cluster time and track time) for (left) the pixel region and (right) the strip region ($x$-direction) of a PixelGEM detector.
000065968 8564_ $$s23234$$uhttp://inspirehep.net/record/1320774/files/fig_s10_095.png$$y00115 Squared four-momentum transfer for $\pi^-\pi^+\pi^-$ events produced by pions hitting a lead target, and selected by the multiplicity trigger.
000065968 8564_ $$s23449$$uhttp://inspirehep.net/record/1320774/files/fig_s10_091a.png$$y00108 Acceptance for the diffractively produced $K^-\pi^+\pi^-$ final state (left)~as a function of the $K\pi\pi$ invariant mass, and (right)~as a function of the polar angle of the $\pi^+K^-$ isobar in the Gottfried-Jackson frame.
000065968 8564_ $$s23733$$uhttp://inspirehep.net/record/1320774/files/fig_s07_057.png$$y00063 The active area of the ECAL2 trigger (shown in blue). The cells shown in orange are rejected due to high rates.
000065968 8564_ $$s24277$$uhttp://inspirehep.net/record/1320774/files/fig_s10_097a.png$$y00117 Momentum transfer distributions for exclusive (left) $\pi^-\gamma$ and (right) $\mu^-\gamma$ events. The data (dotted lines) are compared to the MC simulation (solid lines).
000065968 8564_ $$s24370$$uhttp://inspirehep.net/record/1320774/files/fig_s10_096.png$$y00116 Squared four-momentum transfer of reconstructed beam kaons (data points) compared to the Monte Carlo simulation of purely electromagnetic interaction (solid lines). The dashed line is an exponential fit, used to determine the resolution.
000065968 8564_ $$s24391$$uhttp://inspirehep.net/record/1320774/files/fig_s03_010a.png$$y00011 Horizontal (left) and vertical (right) track angles at the CEDARs. The angles for all tracks measured by the Silicon beam telescope and propagated back to the CEDAR positions are compared to the angles of the tracks accepted by CEDAR1 or CEDAR2. The acceptance of the CEDARs is reduced significantly for very divergent beam tracks.
000065968 8564_ $$s24547$$uhttp://inspirehep.net/record/1320774/files/fig_s06_040a.png$$y00043 Two-dimensional hit distributions in the central part of the RICH-1 photon detectors for (left) data taken with a muon beam and (right) data taken with a positive hadron beam.
000065968 8564_ $$s24555$$uhttp://inspirehep.net/record/1320774/files/fig_s03_009.png$$y00010 Pressure scan with CEDAR1 for a negative hadron beam with at least 6, or with 8 PMTs in coincidence.
000065968 8564_ $$s24886$$uhttp://inspirehep.net/record/1320774/files/fig_s05_033.png$$y00036 Double residual (see text) distribution of the DC4 chamber for one of its doublets. The quoted width is from the fit of a simple Gaussian.
000065968 8564_ $$s249186$$uhttp://inspirehep.net/record/1320774/files/fig_s09_077.png$$y00085 Dependence of $P(\text{signal}|\pi)$ on $\theta_x$ (horizontal) and $\theta_y$ (vertical) for the eight PMTs of CEDAR 2 (arranged according to the CEDAR geometry). The range for both angles is from $-250\,\murad$ to $250\,\murad$. The insets in the centre illustrate the position of a pion (dashed, red) and a kaon (green) ring relative to the PMT positions for $\theta_x=0$ and $\theta_y=0$ (left inset) and for $\theta_x>0$ and $\theta_y=0$ (right inset).
000065968 8564_ $$s24959$$uhttp://inspirehep.net/record/1320774/files/fig_s06_043.png$$y00047 Configuration of ECAL1. The central area is equipped with GAMS modules. The MAINZ modules are installed above and below the GAMS area. The OLGA modules cover the outer left and right regions.
000065968 8564_ $$s25511$$uhttp://inspirehep.net/record/1320774/files/fig_s09_082b.png$$y00095 Difference $\Delta M$ between reconstructed and nominal $\pi^0$ masses in ECAL2 for (left) before calibration and (right) after calibration.
000065968 8564_ $$s25597$$uhttp://inspirehep.net/record/1320774/files/fig_s06_040b.png$$y00044 Two-dimensional hit distributions in the central part of the RICH-1 photon detectors for (left) data taken with a muon beam and (right) data taken with a positive hadron beam.
000065968 8564_ $$s25821$$uhttp://inspirehep.net/record/1320774/files/fig_s09_065.png$$y00071 Relative momentum resolution as a function of track momentum. The standard deviation of the reconstruction error is shown for tracks deflected by the SM2 magnet alone or by both SM1 and SM2 (squares), by the SM1 magnet alone (circles) and for those deflected by the fringe field of SM1 only (triangles, right scale).
000065968 8564_ $$s258904$$uhttp://inspirehep.net/record/1320774/files/fig_s10_101.png$$y00127 Dalitz plot for three diffractively produced charged pions after a cut of $\pm 130\,\MeV/c^2$ around the $\pi_2(1670)$ mass.
000065968 8564_ $$s265712$$uhttp://inspirehep.net/record/1320774/files/fig_s03_007.png$$y00008 A cut through one of the CEDAR detectors.
000065968 8564_ $$s26586$$uhttp://inspirehep.net/record/1320774/files/fig_s09_082a.png$$y00094 Difference $\Delta M$ between reconstructed and nominal $\pi^0$ masses in ECAL2 for (left) before calibration and (right) after calibration.
000065968 8564_ $$s26739$$uhttp://inspirehep.net/record/1320774/files/fig_s06_049.png$$y00054 Standard deviation $\sigma$ for the ECAL2 time resolution as a function of the photon energy E. The solid curve is a fit to the data points using the expression: $\sigma^{2}(E)=1.13/E+0.22/E^{2}+0.39$.
000065968 8564_ $$s267934$$uhttp://inspirehep.net/record/1320774/files/fig_s09_074.png$$y00081 Cherenkov angle for reconstructed rings as a function of the particle momentum for the C$_4$F$_{10}$ radiator.
000065968 8564_ $$s26882$$uhttp://inspirehep.net/record/1320774/files/fig_s05_027a.png$$y00028 Residual distribution (difference between measured cluster position and track penetration point) in $x$-direction for (left) the pixel region and (right) the strip region of a PixelGEM detector. The quoted residual widths are obtained from fits of a sum of two Gaussians. When corrected for the track uncertainties, spatial resolutions of $106\,\mum$ (pixels) and $54\,\mum$ (strips) are obtained for this particular detector.
000065968 8564_ $$s29238$$uhttp://inspirehep.net/record/1320774/files/fig_s10_093b.png$$y00113 Energy balance between outgoing and incoming particles for (left) diffractive dissociation with three charged pions in the final state and (right) for Primakoff scattering.
000065968 8564_ $$s29419$$uhttp://inspirehep.net/record/1320774/files/fig_s10_098a.png$$y00119 Two-photon invariant mass distribution as measured in ECAL2, in the (left) $\pi^0$ mass region and (right) $\eta$ mass region. The solid curves are fits to the signal and to the background. The values of the resolution achieved are indicated in each plot.
000065968 8564_ $$s29918$$uhttp://inspirehep.net/record/1320774/files/fig_s05_037.png$$y00040 Rich Wall residual distribution, showing the difference between reconstructed cluster position and extrapolated track position along the axis perpendicular to the wire layer. The quoted sigma is extracted by fitting a sum of two Gaussians.
000065968 8564_ $$s30067$$uhttp://inspirehep.net/record/1320774/files/fig_s10_099b.png$$y00122 Reconstructed invariant masses for charged particles in the final state. The peaks shown are for (top left) $K^0_S(498)$, (top right) $\phi(1020)$, (bottom left) $\Lambda(1115)$, and (bottom right) $\Xi^\pm$. The $K^0_S$, $\Lambda$, and $\Xi^\pm$ particles are produced in inclusive reactions. The dashed curve in the $\phi(1020)$ plot is a fit to the background.
000065968 8564_ $$s301486$$uhttp://inspirehep.net/record/1320774/files/fig_s05_030.png$$y00033 Two-dimensional efficiency of a Micromegas detector. The empty region in the middle is the $5\,\Cm$ central dead zone.
000065968 8564_ $$s30317$$uhttp://inspirehep.net/record/1320774/files/fig_s05_020.png$$y00021 Spatial resolution as determined for a single Silicon detector plane. ``RMS1'' and ``RMS2'' refer to the cases of clusters with one and two hit strips, respectively.
000065968 8564_ $$s30701$$uhttp://inspirehep.net/record/1320774/files/fig_s10_100a.png$$y00125 Invariant mass spectra for (left) $\pi^-\pi^+\pi^0$ and (right) $\pi^-\pi^+\eta$ systems. The full line in the left panel is a fit to the $\omega$ peak only; the dashed line includes also the background.
000065968 8564_ $$s30931$$uhttp://inspirehep.net/record/1320774/files/fig_s07_055.png$$y00061 Correlation between the energy losses of protons and pions traversing ring A and stopping (or traversing) ring B of the RPD. For each particle type the minimum and the maximum polar angles ($50^\circ$ and $90^\circ$) are shown. The shaded area corresponds to the region rejected by the trigger logic.
000065968 8564_ $$s32902$$uhttp://inspirehep.net/record/1320774/files/fig_s10_098b.png$$y00120 Two-photon invariant mass distribution as measured in ECAL2, in the (left) $\pi^0$ mass region and (right) $\eta$ mass region. The solid curves are fits to the signal and to the background. The values of the resolution achieved are indicated in each plot.
000065968 8564_ $$s32934$$uhttp://inspirehep.net/record/1320774/files/fig_s05_018.png$$y00019 Block diagram of the valve box and the first upstream cryostat labelled SI01. The other two upstream cryostats SI02 and SI03 are equipped analogously. The downstream conical cryostat (CC) is shown in Fig.~\ref{fig:tracking.SI_CC_schematics}. The phase separators are integrated in the cryostats near the detectors, but outside the acceptance.
000065968 8564_ $$s33351$$uhttp://inspirehep.net/record/1320774/files/fig_s07_052.png$$y00058 Beam counter efficiency distribution in transverse coordinates.
000065968 8564_ $$s338389$$uhttp://inspirehep.net/record/1320774/files/fig_s09_075.png$$y00082 Cherenkov angle for reconstructed rings as a function of the particle momentum for the N$_2$ radiator.
000065968 8564_ $$s35085$$uhttp://inspirehep.net/record/1320774/files/fig_s09_068.png$$y00075 Distribution of reconstructed interaction vertices with three outgoing charged particles along the beam direction for exclusive events. For each solid state target the thickness is indicated (in $\mum$).
000065968 8564_ $$s358790$$uhttp://inspirehep.net/record/1320774/files/fig_s09_071.png$$y00078 Correlation between the longitudinal vertex position $z$ determined with the RPD and the one determined with the spectrometer.
000065968 8564_ $$s36294$$uhttp://inspirehep.net/record/1320774/files/fig_s05_021.png$$y00022 Time resolution of a single Silicon detector projection.
000065968 8564_ $$s36382$$uhttp://inspirehep.net/record/1320774/files/fig_s03_006.png$$y00007 The basic principle of a CEDAR counter. Two particles with the same momentum but with different masses (here red and green lines) radiate Cherenkov photons at different angles, resulting in rings with different radii. A diaphragm selects the rings from the required particle type.
000065968 8564_ $$s3722$$uhttp://inspirehep.net/record/1320774/files/fig_s01_001a.png$$y00000 Production mechanisms employed in COMPASS for (left) diffractive dissociation, (middle) central production, (right) photo-production by quasi-real photons $\gamma$, with $\pi$ denoting the beam particle (can be also $p$, $K$), and $N$ the target nucleon or nucleus.
000065968 8564_ $$s3915$$uhttp://inspirehep.net/record/1320774/files/fig_s01_001c.png$$y00002 Production mechanisms employed in COMPASS for (left) diffractive dissociation, (middle) central production, (right) photo-production by quasi-real photons $\gamma$, with $\pi$ denoting the beam particle (can be also $p$, $K$), and $N$ the target nucleon or nucleus.
000065968 8564_ $$s435871$$uhttp://inspirehep.net/record/1320774/files/fig_s05_023.png$$y00024 Schematic view of the pixel and strip region of the readout circuit. Note that the pixel region consists of $32\times 32$ pixels of $1\,\mm^2$ size each, while only $4\times 4$ are shown for clarity. Figure not to scale.
000065968 8564_ $$s44243$$uhttp://inspirehep.net/record/1320774/files/fig_s08_060.png$$y00066 \small Trigger rate versus event size. The COMPASS DAQ system is compared to several large-scale experiments. The comparison is done for first-level (L1) triggers or their equivalent.
000065968 8564_ $$s4826878$$uhttp://inspirehep.net/record/1320774/files/fig_s05_025.png$$y00026 A fully assembled PixelGEM detector, equipped with 16 APV front-end cards. The digitisation of the analog signals from the APVs is done at an external ADC card, which is connected via the grey cables.
000065968 8564_ $$s490346$$uhttp://inspirehep.net/record/1320774/files/fig_s08_063.png$$y00069 Implementation of supervision, front-end and device layers of the Detector Control System.
000065968 8564_ $$s49388$$uhttp://inspirehep.net/record/1320774/files/fig_s05_029.png$$y00032 Efficiency of one of the PixelGEM detectors, measured in a high-intensity hadron beam. The horizontal lines with reduced efficiency correspond to boundaries between GEM sectors. In the white region not enough tracks are reconstructed when this particular detector is excluded from the tracking.
000065968 8564_ $$s501229$$uhttp://inspirehep.net/record/1320774/files/fig_s02_002.png$$y00003 Three-dimensional view of the COMPASS setup for measurements with hadron beams. The beam comes from the left side. The upstream part of the setup (beam line) is not shown here. The different colours indicate different detector types.
000065968 8564_ $$s52793$$uhttp://inspirehep.net/record/1320774/files/fig_s06_044.png$$y00048 Schematic view of the LASER monitoring system for ECAL1. The laser beam is distributed to the ECAL1 modules using one primary (D1) and eight secondary (D2) light diffusion spheres. For clarity, only one of the 8 primary fibres dispatching the light to D2, only one of the secondary 1500 fibres transmitting it to the LG modules, and only one of the 8 front-end-monitoring (FEM) modules are explicitly shown.
000065968 8564_ $$s566021$$uhttp://inspirehep.net/record/1320774/files/fig_s03_005.png$$y00006 The CERN M2 beam line.
000065968 8564_ $$s58346$$uhttp://inspirehep.net/record/1320774/files/fig_s03_008.png$$y00009 Pressure scan with CEDAR1 for a positive hadron beam with at least 4, 6 or 8 PMTs in coincidence. The kaon peak cannot be distinguished from the pion peak.
000065968 8564_ $$s59570$$uhttp://inspirehep.net/record/1320774/files/fig_s09_066.png$$y00072 Run-by-run alignment correction applied to the silicon detector positions and correlation with ambient temperature.
000065968 8564_ $$s60637$$uhttp://inspirehep.net/record/1320774/files/fig_s09_085.png$$y00099 Difference between the beam energy and the total measured energy as a function of the photon energy.
000065968 8564_ $$s60871$$uhttp://inspirehep.net/record/1320774/files/fig_s08_061.png$$y00067 \small Overview of the COMPASS DAQ system. Data coming from the detectors are first digitised in the front-end cards and then merged in the concentrator modules, either CATCH or GeSiCA(HotGeSiCA). The data from the concentrator modules are first sent to the Readout Buffers and then transmitted to the Event Builders. The data are temporarily saved on disk, before being migrated to the Central Data Recording facility.
000065968 8564_ $$s61485$$uhttp://inspirehep.net/record/1320774/files/fig_s09_084.png$$y00098 Ratio of track momentum over calorimeter energy as a function of the impact position in a Shashlik module relative to its centre. The four central spots with a ratio larger than one correspond to the four module rods.
000065968 8564_ $$s62884$$uhttp://inspirehep.net/record/1320774/files/fig_s10_089.png$$y00105 Monte Carlo simulation of the Primakoff-Compton reaction, showing the reconstructed position of the primary vertex along the beam direction as a function of the scattering angle of the outgoing pion. Note that interactions outside the target material are not simulated.
000065968 8564_ $$s63409$$uhttp://inspirehep.net/record/1320774/files/fig_s02_003.png$$y00004 Top view of the COMPASS setup for data taking with hadron beams. The labels indicate the various detectors, as referenced throughout this paper. The vertical scale is only indicative of the relative detector sizes. The colour code follows that of Fig.~\ref{fig:layout.3d}.
000065968 8564_ $$s65095$$uhttp://inspirehep.net/record/1320774/files/fig_s09_078c.png$$y00087 Values for the log-likelihoods function for different samples obtained from CEDAR 2 calculated for (a) the kaon sample, (b) the pion sample and (c) an unbiased beam sample. The red line indicates $\log L(\pi) = \log L(K)$.
000065968 8564_ $$s65562$$uhttp://inspirehep.net/record/1320774/files/fig_s09_078b.png$$y00086 pion sample
000065968 8564_ $$s75928$$uhttp://inspirehep.net/record/1320774/files/fig_s09_086.png$$y00100 Intra-cell energy variation as a function of the distance to the cell centre.
000065968 8564_ $$s8055$$uhttp://inspirehep.net/record/1320774/files/fig_s05_035.png$$y00038 Front view of an $X$-plane of the Rich Wall detector. The large-size numbers correspond to the number of MDT modules in each sector, the small numbers indicate the dimensions in units of $\mm$.
000065968 8564_ $$s81786$$uhttp://inspirehep.net/record/1320774/files/fig_s06_047.png$$y00052 Photographs of a Shashlik-type calorimeter module. Left part: the upstream face of the module with its four central rods and 16 light fibres. Right part: the module itself with the fibres guide at the downstream face.
000065968 8564_ $$s86945$$uhttp://inspirehep.net/record/1320774/files/fig_s09_081b.png$$y00093 Energy deposition in two ECAL2 modules as a function of the difference between reconstructed and nominal $\pi^0$ mass for (left) a module with typical behaviour and (right) a module with an unusual behaviour.
000065968 8564_ $$s90846$$uhttp://inspirehep.net/record/1320774/files/fig_s09_067b.png$$y00074 Distribution of scattering angle of the outgoing pion vs the position of primary vertex along the beam axis from Primakoff data, illustrating the improvement of the vertex resolution between (left) standard alignment and (right) run-by-run alignment. The structures correspond to interactions in the different targets used in the measurement (see Table~\ref{tab:target.overview}) and in the first Silicon station downstream of the targets.
000065968 8564_ $$s927381$$uhttp://inspirehep.net/record/1320774/files/fig_s04_013.png$$y00014 Schematic view of the target holder used for measurements with nuclear targets.
000065968 8564_ $$s9920$$uhttp://inspirehep.net/record/1320774/files/fig_s09_079a.png$$y00088 Shower reconstruction: (left) fraction of total shower energy collected from $-\infty$ up to a particular distance from the shower center (Eq.~\ref{eq:reconstruction.ecal.showerprofile1D}); (right) fraction of the total energy deposited in a column as a function of its distance from the shower center.
000065968 8564_ $$s22464230$$uhttp://inspirehep.net/record/1320774/files/arXiv:1410.1797.pdf
000065968 909CO $$ooai:inspirehep.net:1320774$$pCERN$$pINSPIRE:HEP$$pCERN:arXiv
000065968 980__ $$aCORE
000065968 980__ $$aarXiv
000065968 980__ $$aCiteable
000065968 980__ $$aHEP
000065968 999C6 $$a0-0-0-0-1-0-0$$t2014-10-08 09:14:56$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44$$vcontent.pdf;1
000065968 999C5 $$0747655$$cCOMPASS Collaboration$$hP. Abbon, et al.$$o1$$sNucl.Instrum.Meth.,A577,455$$y2007
000065968 999C5 $$0835613$$cCOMPASS Collaboration$$hM. Alekseev, et al.$$o2$$sPhys.Rev.Lett.,104,241803$$y2010
000065968 999C5 $$0955170$$cCOMPASS Collaboration$$hC. Adolph, et al.$$o3$$sPhys.Rev.Lett.,108,192001$$y2012
000065968 999C5 $$0736209$$hP. Abbon, et al.$$o4$$sNucl.Instrum.Meth.,A567,114$$y2006
000065968 999C5 $$9CURATOR$$hH. Atherton, et al.$$mCERN Yellow Report$$o5$$rCERN-80-07$$tPrecise measurements of particle production by 400 GeV/c protons on beryllium targets$$y1980
000065968 999C5 $$9CURATOR$$hC. Bovet, et al.$$mCERN Yellow Report$$o6$$rCERN-82-13$$tThe CEDAR counters for particle identification in the SPS secondary beams$$y1982
000065968 999C5 $$0362404$$hD. Alde, et al.$$mGAMS NA-12/2 Collaboration$$o7$$sNucl.Instrum.Meth.,A342,389$$y1994
000065968 999C5 $$hT. Alimova, et al.$$o8$$rIFVE-86-35
000065968 999C5 $$hJ. Bernhard$$mAufbau des inneren Rings eines Recoildetektors am COMPASS Experiment, p. 36-38, Master’s thesis, Johannes-Gutenberg Universität Mainz$$o9$$y2007
000065968 999C5 $$0924713$$hT. Schlüter, et al.$$o10$$sNucl.Instrum.Meth.,A654,219$$y2011
000065968 999C5 $$0563299$$hM. J. French, et al.$$o11$$sNucl.Instrum.Meth.,A466,359$$y2001
000065968 999C5 $$9CURATOR$$mMUSCADE(r), µS.C.A.D.A for Embedded System and PC$$o12$$uhttp://irfu.cea.fr/Sis/products/www/muscade
000065968 999C5 $$hS. Grabmüller$$mCryogenic silicon detectors and analysis of primakoff contributions to the reaction π- pb → π-π-π+ pb at COMPASS, Ph.D. thesis, Technische Universität München$$o13$$y2012
000065968 999C5 $$0457577$$hF. Sauli$$o14$$sNucl.Instrum.Meth.,A386,531$$y1997
000065968 999C5 $$0669917$$hB. Ketzer, et al.$$o15$$sNucl.Instrum.Meth.,A535,314$$y2004
000065968 999C5 $$hB. Ketzer, et al.$$mA triple GEM detector with pixel readout for high-rate beam tracking in COMPASS, in: Nuclear Science Symposium Conference Record,. NSS ’07 Vol. 1 Piscataway, NJ,, pp. 242-244$$o16$$pIEEE$$pIEEE$$y2007
000065968 999C5 $$0582940$$hM. C. Altunbas, et al.$$o17$$sNucl.Instrum.Meth.,A490,177$$y2002
000065968 999C5 $$9CURATOR$$mXilinx programmable logic devices, Xilinx, San Jose, California, USA$$o18$$uhttp://www.xilinx.com
000065968 999C5 $$hM. Krämer, et al.$$mFirst results of the PixelGEM central tracking system of COMPASS, in: Nuclear Science Symposium Conference Record,. NSS ’08 Piscataway, NJ,, pp. 2920-2925$$o19$$pIEEE$$y2008
000065968 999C5 $$0856758$$hA. Austregesilo, et al.$$m11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08)$$o20$$sNucl.Phys.Proc.Suppl.,197,113$$y2009
000065968 999C5 $$hF. M. Newcomer, et al.$$o21$$sIEEE Trans.Nucl.Sci.,40,630$$y1993
000065968 999C5 $$0571136$$hF. Gonella, et al.$$mThe MAD, a full custom ASIC for the CMS barrel muon chambers front end electronics 7th Workshop on Electronics for LHC Experiments, Stockholm, Sweden, 10-14 Sep$$o22$$rCERN-LHCC-2001-034$$y2001
000065968 999C5 $$0535623$$hH. Fischer, et al.$$o23$$sNucl.Instrum.Meth.,A461,507$$y2001
000065968 999C5 $$0700085$$hE. Albrecht, et al.$$mand references therein$$o24$$sNucl.Instrum.Meth.,A553,215$$y2005
000065968 999C5 $$0619254$$hE. Albrecht, et al.$$o25$$sNucl.Instrum.Meth.,A502,266$$y2003
000065968 999C5 $$0619248$$hE. Albrecht, et al.$$o26$$sNucl.Instrum.Meth.,A502,236$$y2003
000065968 999C5 $$hJ. C. Santiard, et al.$$mGASSIPLEX: a low noise analog signal processor for read-out of gaseous detectors, presented at the 6th Pisa Meeting on Advanced Detectors, La Biodola, Isola d’Elba, Italy$$o27$$y1994
000065968 999C5 $$0736208$$hP. Abbon, et al.$$o28$$sNucl.Instrum.Meth.,A567,104$$y2006
000065968 999C5 $$0785397$$hP. Abbon, et al.$$o29$$sNucl.Instrum.Meth.,A587,371$$y2008
000065968 999C5 $$0857864$$hP. Abbon, et al.$$o30$$sNucl.Instrum.Meth.,A616,21$$y2010
000065968 999C5 $$0896751$$hP. Abbon, et al.$$o31$$sNucl.Instrum.Meth.,A631,26$$y2011
000065968 999C5 $$0214007$$hF. Binon, et al.$$o32$$sNucl.Instrum.Meth.,A248,86$$y1986
000065968 999C5 $$0420349$$hM. Adamovich, et al.$$mBEATRICE Collaboration$$o33$$sNucl.Instrum.Meth.,A379,252$$y1996
000065968 999C5 $$0212891$$hP. Astbury, et al.$$mNA14 Collaboration$$o34$$sPhys.Lett.,B152,419$$y1985
000065968 999C5 $$9CURATOR$$hM. Anfreville, et al.$$o35$$rCERN-CMS-NOTE-2007-028
000065968 999C5 $$9CURATOR$$mContinuum, Santa Clara CA 95051, USA$$o36$$uhttp://www.continuumlasers.com
000065968 999C5 $$0361724$$hM. Kobayashi, et al.$$o37$$sNucl.Instrum.Meth.,A345,210$$y1994
000065968 999C5 $$hA. Mann, et al.$$m15th -NPSS Real-Time Conference  1$$o38$$pIEEE$$y2007
000065968 999C5 $$0698300$$hC. Bernet, et al.$$o39$$sNucl.Instrum.Meth.,A550,217$$y2005
000065968 999C5 $$mCYPRESS Semiconductor Corporation, CY7B923/33 HOTLink Transmitter/Receiver Data Sheet$$o40
000065968 999C5 $$0599681$$hH. Fischer, et al.$$o41$$sIEEE Trans.Nucl.Sci.,49,443$$y2002
000065968 999C5 $$0454809$$hBij, et al.$$mH. C. van der$$o42$$sIEEE Trans.Nucl.Sci.,44,398$$y1997
000065968 999C5 $$0928370$$hF. Carena, et al.$$mALICE DAQ and ECS user’s guide, CERN$$o43$$rALICE-INT-2005-015
000065968 999C5 $$0620737$$hJ.-P. Baud, et al.$$mCASTOR status and evolution, in: Computing in high energy and nuclear physics (CHEP03), La Jolla, CA, USA,, arXiv:$$o44$$rcs/0305047$$y2003
000065968 999C5 $$mMySQL AB, 753 20 Uppsala, Sweden$$o45$$uhttp://www.mysql.com
000065968 999C5 $$mOracle, Oracle Coropration, Santa Clara, California, USA ://www.oracle.com$$o46$$uhttp://http
000065968 999C5 $$hV. Jarý$$mCompass database upgrade, workshop doktorandské dny, Master’s thesis, Czech Technical University, Prague$$o47$$y2010
000065968 999C5 $$9CURATOR$$mApache software foundation, http server project$$o48$$uhttp://httpd.apache.org
000065968 999C5 $$9CURATOR$$mNagios - the industry standard in open source monitoring$$o49$$uhttp://nagios.org
000065968 999C5 $$01118570$$adoi:10.1109/AQTR.2012.6237669$$hP. Bordalo, et al.$$mControl systems: An application to a high energy physics experiment (COMPASS), in: Proceedings of the International Conference on Automation Quality and Testing Robotics (AQTR), Cluj-Napoca, 24-27 May$$o50$$pIEEE$$y2012
000065968 999C5 $$mETM professional control GmbH, Eisenstadt, Austria$$o51$$uhttp://www.pvss.com
000065968 999C5 $$mJCOP Framework + Framework$$o52$$uhttp://j2eeps.cern.ch/wikis/display/EN/JCOP
000065968 999C5 $$mThe OPC Foundation$$o53$$uhttp://www.opcfoundation.org
000065968 999C5 $$hC. Gaspar, et al.$$o54$$sComput.Phys.Commun.,140,102$$y2001
000065968 999C5 $$mCAEN, Viareggio (LU), Italy$$o55$$uhttp://www.caen.it
000065968 999C5 $$9CURATOR$$mDIP$$o56$$uhttp://en-dep.web.cern.ch/en-dep/Groups/ICE/Services/DIP
000065968 999C5 $$mModBus$$o57$$uhttp://www.modbus.org
000065968 999C5 $$0458148$$hR. Brun, et al.$$o58$$sNucl.Instrum.Meth.,A389,81$$uhttp://root.cern.ch$$y1997
000065968 999C5 $$0624369$$hR. Brun, et al.$$o59$$sNucl.Instrum.Meth.,A502,676$$y2003
000065968 999C5 $$0259509$$hR. Frühwirth$$o60$$sNucl.Instrum.Meth.,A262,444$$y1987
000065968 999C5 $$0589639$$hV. Blobel, et al.$$mA new method for the high-precision alignment of track detectors, in: Proc. PHYSTAT$$o61$$rhep-ex/0208021$$y2002
000065968 999C5 $$0364963$$hA. A. Lednev$$o62$$sNucl.Instrum.Meth.,A366,292$$y1995
000065968 999C5 $$hI. Uman, et al.$$o63$$sChin.Phys.,C34,1375$$y2010
000065968 999C5 $$01296422$$hJ. M. Friedrich$$mChiral Dynamics in Pion-Photon Reactions, Habilitation thesis, Technische Universität München, Physik-Department E18$$o64$$rCERN-THESIS-2012-333$$y2012
000065968 999C5 $$mGEANT - detector description and simulation tool, CERN Program Library Long Writeup W5013$$o65$$uhttp://wwwasdoc.web.cern.ch/wwwasdoc/geant_html3/geantall.html