000065000 001__ 65000
000065000 005__ 20140304113621.0
000065000 0247_ $$2DOI$$a10.1134/S1063778814010049
000065000 035__ $$9INSPIRETeX$$aBarabanov:2014lka
000065000 100__ $$aBarabanov, M.Yu.$$uDubna, JINR$$vJoint Institute for Nuclear Research - Dubna - Russia
000065000 245__ $$aNew research of charmonium over $D \overline{D}$ threshold using the antiproton beam with momentum ranging from 1 to 15 GeV/c
000065000 260__ $$c2014
000065000 300__ $$a5
000065000 520__ $$aThe spectroscopy of charmonium c ̄ c is discussed. It is a good testing tool for the theories of strong interactions, including: QCD in both the p erturbative and non-perturbative regimes, LQCD, potential models and phenomenological models. For this purpose an elaborated analysis of the charmonium spectrum is given, and attempts to interpret recent experimental data in the above D ̄ D threshold region are considered. Experiments using antiproton beams take advantage of the intensive production of particle – antiparticle pairs in antiproton – proton annihilations. Experimental data from di ff erent collaborations are analyzed with special attention given to new states with hidden charm that were discovered recently. Some of these states can be interpreted as higher-laying S , P ,and D wave charmonium states. But much more data on di ff erent decay modes are needed before fi rmer conclusions can be made. These data can be derived directly from the experiments using a high quality antiproton beam with momenta ranging from 1to15GeV/ c .
000065000 541__ $$aejl$$cbatchupload
000065000 65017 $$2INSPIRE$$aExperiment-HEP
000065000 695__ $$2INSPIRE$$a* Automatic Keywords *
000065000 695__ $$2INSPIRE$$aanti-p: beam
000065000 695__ $$2INSPIRE$$aanti-p p: annihilation
000065000 695__ $$2INSPIRE$$acharmonium
000065000 695__ $$2INSPIRE$$aquantum chromodynamics
000065000 695__ $$2INSPIRE$$aparticle antiparticle
000065000 695__ $$2INSPIRE$$alattice field theory
000065000 695__ $$2INSPIRE$$astrong interaction
000065000 695__ $$2INSPIRE$$anonperturbative
000065000 695__ $$2INSPIRE$$apotential model
000065000 695__ $$2INSPIRE$$adecay modes
000065000 695__ $$2INSPIRE$$aquality
000065000 695__ $$2INSPIRE$$acharm
000065000 695__ $$2INSPIRE$$acharmonium
000065000 695__ $$2INSPIRE$$alattice field theory
000065000 695__ $$2INSPIRE$$acharm
000065000 695__ $$2INSPIRE$$aquantum chromodynamics
000065000 700__ $$aVodopyanov, A.S.$$uDubna, JINR$$vJoint Institute for Nuclear Research - Dubna - Russia
000065000 700__ $$aOlsen, S.L.$$uSeoul Natl. U.
000065000 773__ $$c126-130$$pPhys.Atom.Nucl.$$v77$$y2014
000065000 909CO $$ooai:inspirehep.net:1281967$$pINSPIRE:HEP
000065000 980__ $$aHEP
000065000 980__ $$aCiteable
000065000 980__ $$aPublished
000065000 999C5 $$mW. Erni et al., arXiv: 0903.3905 [hep-ex].$$o1$$xW. Erni et al., arXiv: 0903.3905 [hep-ex].
000065000 999C5 $$0874793$$a10.1140/epjc/s10052-010-1534-9$$hN Brambilla$$o2$$sEur.Phys.J.,C71,1534$$xN. Brambilla et al., Eur. Phys. J. C 71 1534 (2011).$$y2011
000065000 999C5 $$mS. L. Olsen, arXiv: 0801.1153v3 [hep-ex].$$o3$$xS. L. Olsen, arXiv: 0801.1153v3 [hep-ex].
000065000 999C5 $$0831308$$o4$$rarXiv:0909.2713$$xS. L. Olsen, arXiv:0909.2713v1 [hep-ex].
000065000 999C5 $$0778123$$a10.1146/annurev.nucl.58.110707.171145$$hS Godfrey, S Olsen$$o5$$sAnn.Rev.Nucl.Part.Sci.,58,51$$xS. Godfrey and S. Olsen, Ann. Rev. Nucl. Part. Sci. 58, 51 (2008).$$y2008
000065000 999C5 $$0743068$$a10.1103/RevModPhys.80.1161$$hE Eichten, S Godfrey, H Mahlke, J L Rosner$$o6$$sRev.Mod.Phys.,80,1161$$xE. Eichten, S. Godfrey, H. Mahlke, and J. L. Rosner, Rev. Mod. Phys. 80, 1161 (2008).$$y2008
000065000 999C5 $$0875948$$a10.1088/0954-3899/37/7A/075021$$hK Nakamura$$o7$$sJ.Phys.,G37,075021$$xK. Nakamura et al. (Rev. Part. Phys.), J. Phys. G 37, 075021 (2010).$$y2010
000065000 999C5 $$hA A Izmet’ev$$o8$$sSov.J.Nucl.Phys.,52,1068$$xA. A. Izmet’ev, Sov. J. Nucl. Phys. 52, 1068 (1990).$$y1990
000065000 999C5 $$hA A Izmet’ev$$o9$$sSov.J.Nucl.Phys.,53,867$$xA. A. Izmet’ev, Sov. J. Nucl. Phys. 53, 867 (1991).$$y1991
000065000 999C5 $$a10.1007/BF03043097$$hJ Keller, R M Yamaleev, A Rodriguez$$o10$$sAdv.Appl.Clifford Algebras,8,235$$xJ. Keller, R. M. Yamaleev, and A. Rodriguez, Adv. Appl. Clifford Algebras 8, 235 (1998).$$y1998
000065000 999C5 $$a10.1007/BF03043098$$hF A Gareev, J Keller, RM Yamaleev$$o11$$sAdv.Appl.Clifford Algebras,8,255$$xF. A. Gareev, J. Keller, and R.M. Yamaleev, Adv. Appl. Clifford Algebras 8, 255 (1998).$$y1998
000065000 999C5 $$0775378$$a10.1007/s11182-008-9012-7$$hM Yu Barabanov, A S Vodopyanov, S N Chukanov$$o12$$set al., Russ.Phys.J.,50,1243$$xM. Yu. Barabanov, A. S. Vodopyanov, S. N. Chukanov, et al., Russ. Phys. J. 50, 1243 (2007).$$y2007
000065000 999C5 $$hM Yu Barabanov$$o13$$sA.S.Vodopyanov, V.Kh.Dodokhov, etal., Hadronic J.,32,159$$xM. Yu. Barabanov, A. S. Vodopyanov, V. Kh. Dodokhov, etal., Hadronic J. 32, 159 (2009).$$y2009
000065000 999C5 $$01087126$$a10.1134/S1547477111100049$$hM Yu Barabanov, A S Vodopyanov, V Kh Dodokhov$$o14$$sPhys.Part.Nucl.Lett.,8,1069$$xM. Yu. Barabanov, A. S. Vodopyanov, and V. Kh. Dodokhov, Phys. Part. Nucl. Lett. 8, 1069 (2011).$$y2011
000065000 999C5 $$hF A Gareev, G S Kazacha, Yu L Ratis$$o15$$sPhys.Part.Nucl.,27,40$$xF. A. Gareev, G. S. Kazacha, and Yu. L. Ratis, Phys. Part. Nucl. 27, 40 (1996).$$y1996
000065000 999C5 $$hA I Baz’, Ya B Zel’dovich, A M Perelomov$$o16$$pNauka$$tScattering Reactions and Decays in Nonrelativistic Quantum Mechanics$$xA. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering Reactions and Decays in Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1971) [in Russian].$$y1971