000061825 001__ 61825
000061825 005__ 20140130013032.0
000061825 035__ $$9INSPIRETeX$$aNasirov:2013yoa
000061825 035__ $$9arXiv$$aoai:arXiv.org:1308.1513
000061825 037__ $$9arXiv$$aarXiv:1308.1513$$cnucl-th
000061825 100__ $$aNasirov, Avazbek$$uInstitute of Nuclear Physics, Tashkent, Uzbekistan$$uJoint Institute for Nuclear Research, Dubna, Russia
000061825 245__ $$9arXiv$$aMain restrictions in the synthesis of new superheavy elements: quasifission or/and fusion-fission
000061825 246__ $$9arXiv$$aMain restrictions in the synthesis of new superheavy elements: quasifission or/and fusion-fission
000061825 269__ $$c2013-08-07
000061825 300__ $$a27
000061825 500__ $$a*Brief entry*
000061825 500__ $$9arXiv$$a27 pages and 15 figures. arXiv admin note: text overlap with arXiv:1109.2013
000061825 520__ $$9arXiv$$aThe synthesis of superheavy elements stimulates the effort to study the peculiarities of the complete fusion with massive nuclei and to improve theoretical models in order to extract knowledge about reaction mechanism in heavy ion collisions at low energies. We compare the theoretical results of the compound nucleus (CN) formation and evaporation residue (ER) cross sections obtained for the $^{48}$Ca+$^{248}$Cm and $^{58}$Fe+$^{232}$Th reactions leading to the formation of the isotopes $A=296$ and $A=290$, respectively, of the new superheavy element Lv ($Z=116$). The ER cross sections, which can be measured directly, are determined by the complete fusion and survival probabilities of the heated and rotating compound nucleus. That probabilities can not be measured unambiguously but the knowledge about them is important to study the formation mechanism of the observed products. For this aim, the $^{48}$Ca+$^{249}$Cf and $^{64}$Ni+$^{232}$Th reactions have been considered too. The use of the mass values of superheavy nuclei calculated in the framework of the macroscopic-microscopic model by Warsaw group leads to smaller ER cross section for all of the reactions (excluding the $^{64}$Ni+$^{232}$Th reaction) in comparison with the case of using the masses calculated by Peter M\"oller {\it et al}.
000061825 540__ $$ahttp://arxiv.org/licenses/nonexclusive-distrib/1.0/$$barXiv
000061825 541__ $$aarxiv$$cOAI
000061825 65017 $$2arXiv$$anucl-th
000061825 65017 $$2INSPIRE$$aTheory-Nucl
000061825 65017 $$2arXiv$$anucl-ex
000061825 65017 $$2INSPIRE$$aExperiment-Nucl
000061825 700__ $$aKim, Kyungil$$uRare Isotope Science Project, Institute for Basic Science, Daejeon, Republic of Korea
000061825 700__ $$aMandaglio, Giuseppe$$uCentro Siciliano di Fisica Nucleare e Struttura della Materia Catania, Italy$$uIstituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy$$uDipartimento di Fisica e di Scienze della Terra dell' Università di Messina, Messina, Italy
000061825 700__ $$aGiardina, Giorgio$$uIstituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy$$uDipartimento di Fisica e di Scienze della Terra dell' Università di Messina, Messina, Italy
000061825 700__ $$aMuminov, Akhtam$$uInstitute of Nuclear Physics, Tashkent, Uzbekistan
000061825 700__ $$aKim, Youngman$$uRare Isotope Science Project, Institute for Basic Science, Daejeon, Republic of Korea
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig1.png$$y00000 (Color online) The sketch of the damped reaction channels (I-III) leading to formation of binary or fissionlike fragments which compete in the way to complete fusion (IV) of the initial projectile P and target T nuclei: P' and T' are deep-inelastic collision (not full momentum transfer) products; P'' and T'' quasifission (full momentum transfer) products; F$_1$ and F$_2$ are fusion-fission fragments.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig10.png$$y00009 (Color online) Quasifission (dashed line), fast fission (dot-dashed line), and complete fusion (solid line) excitation functions calculated by the DNS model \cite{FazioMPL2005,NasirovNPA759,FazioPRC2005} for the $^{48}$Ca+$^{249}$Cf reaction which could lead to the $^{297}118$ CN. The capture cross section is not shown here because it is completely overlapped with the quasifission cross section.  The excitation energy $E^*_{\rm CN}$ (top axis) is calculated by the use of the M\"oller and Nix mass table \cite{MolNix}.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig11.png$$y00010 (Color online) Same as in Fig. \ref{FusCaCf} but for the $^{64}$Ni+$^{232}$Th reaction.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig12.png$$y00011 (Color online) Comparison of the driving potentials calculated for the DNS formed in the $^{48}$Ca+$^{2489}$Cf and $^{64}$Ni+$^{232}$Th reactions which can lead to formation of isotopes $A$=297 and 296 of new superheavy element $Z$=118 as a function of the fragment charge number.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig13.png$$y00012 The quasifission barriers of the DNS fragments as a function of their charge numbers for the $^{48}{\rm Ca}$+$^{249}{\rm Cf}$ (solid curve) and $^{64}{\rm Ni}$+$^{232}{\rm Th}$ (dashed curve) reactions.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig14.png$$y00013 (Color online) Comparison between the ER excitation functions for the $^{48}$Ca+$^{249}$Cf reaction calculated by using mass tables of M\"oller and Nix \cite{MolNix} (thin lines) and of the Warsaw group \cite{Muntian03} (thick lines) for the 2n (dashed lines), 3n (solid lines), 4n (dot-dashed lines), and 5n (dotted lines) channels calculated by the advanced statistical model \cite{ArrigoPRC1992,SagJPG1998}. The experimental data of Ref. \cite{FLNR} are presented by squares.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig15.png$$y00014 (Color online) Same as in Fig. \ref{ERCa249Cf} but for the $^{64}$Ni+$^{232}$Th reaction.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig2.png$$y00001 (Color online) Illustration of capture (a) and deep inelastic collision (b) at heavy ion collisions. Total kinetic energy (TKE) of the relative motion and the part of nucleus-nucleus potential are shown by solid and dotted curves, respectively.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig3.png$$y00002 (Color online) Potential energy surface calculated for the DNS leading to formation of the $^{296}$116 compound nucleus as a function of the relative distance between the centers of mass of interacting nuclei and mass number of a fragment. The capture stage path is shown by arrow (a) and complete fusion by multinucleon transfer occurs (b) if system overcomes intrinsic fusion barrier. Arrow (c) shows one of possibilities of the DNS quasifission. The broken dot-dashed line corresponds to the driving potential $U(Z,R_m)$ which is determined by the minimum values of the potential wells for each charge value $Z$. $R_m$ is the position of the minimum value of interaction potential on the relative distance $R$.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig4.png$$y00003 (Color online) Comparison of the driving potentials calculated for the DNS formed in the $^{48}$Ca+$^{248}$Cm and $^{58}$Fe+$^{232}$Th reactions which can lead to formation of isotopes $A$=296 and 290 of new superheavy element Lv ($Z$=116) as a function of the fragment charge number.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig5.png$$y00004 The quasifission barriers of the DNS fragments as a function of their charge numbers for the $^{48}{\rm Ca}$+$^{248}{\rm Cm}$ (solid curve) and $^{58}{\rm Fe}$+$^{232}{\rm Th}$ (dashed curve) reactions.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig6.png$$y00005 (Color online) Capture (thin dashed line), quasifission (thick dashed line), fast fission (dot-dashed line) and fusion (solid line) cross sections calculated by the DNS model for the $^{48}$Ca+$^{248}$Cm reaction. The excitation energy $E^*_{\rm CN}$ of CN (top axis) is calculated by the use of the M\"oller and Nix mass table \cite{MolNix}.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig7.png$$y00006 (Color online) Same as Fig. \ref{FusCaCm} but for the $^{58}$Fe+$^{232}$Th reaction.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig8.png$$y00007 (Color online) Comparison between the ER excitation functions for the $^{48}$Ca+$^{248}$Cm reaction calculated by using mass tables of M\"oller and Nix \cite{MolNix} (thick lines) and of the Warsaw group \cite{Muntian03} (thin lines) for the 2n (solid lines), 3n (dashed lines), 4n (dot-dashed lines), and 5n (dot-dot-dashed lines) channels calculated by the advanced statistical model \cite{ArrigoPRC1992,SagJPG1998}. The experimental data of Ref. \cite{Oganessian04,FLNR} for the 3n and 4n channels are presented by triangles and squares, respectively.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/Fig9.png$$y00008 (Color online) The same as in Fig. \ref{ERCaCm} but for the $^{58}$Fe+$^{232}$Th reaction.
000061825 8564_ $$uhttp://inspirehep.net/record/1246932/files/arXiv%3A1308.1513.pdf
000061825 909CO $$ooai:inspirehep.net:1246932$$pINSPIRE:HEP
000061825 909CO $$pglobal
000061825 980__ $$aarXiv
000061825 980__ $$aCiteable
000061825 980__ $$aHEP
000061825 999C5 $$mKosuke Morita, Kouji Morimoto, Daiya Kaji, Takahiro Akiyama, Sin-ichi Goto, Hiromitsu Haba, Eiji Ideguchi, Rituparna Kanungo, Kenji Katori, Hiroyuki Koura, Hisaaki Kudo, Tetsuya Ohnishi, Akira Ozawa, Toshimi Suda, Keisuke Sueki, HuShan Xu, Takayuki Yamaguchi, Akira Yoneda, Atsushi Yoshida and YuLiang Zhao$$o1$$sJ.Phys.Soc.Jap.,76,043201$$y2007
000061825 999C5 $$0669307$$hOganessian, V. K.$$mYu. Ts Utyonkov, Yu. V. Lobanov, F. Sh Abdullin, A. N. Polyakov, I. V Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, and M. G. Itkis J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, and R. W. Lougheed R. I. Il’kaev and S. P. Vesnovskii$$o2$$sPhys.Rev.,C70,064609$$y2004
000061825 999C5 $$0729190$$hOganessian, V. K.$$mYu. Ts Utyonkov, Yu. V. Lobanov, F. Sh Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, and M. G. Itkis K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, and R. W. Lougheed$$o3$$sPhys.Rev.,C74,044602$$y2006
000061825 999C5 $$hL. Stavsetra, K. E. Gregorich, J. Dvorak, P. A. Ellison, I. Dragojevíc, M. A. Garcia, and H. Nitsche1$$o4$$sPhys.Rev.,C103,132502$$y2009
000061825 999C5 $$0914706$$hJ. M. Gates$$mCh. E. D ullmann, M. Sch adel, A. Yakushev A. T urler, K. Eberhardt, J. V. Kratz, D. Ackermann, L.-L. Andersson, M. Block, W. Br uchle, J. Dvorak, H. G. Essel, P. A. Ellison, J. Even, U. Forsberg, J. Gellanki, A. Gorshkov, R. Graeger, K. E. Gregorich, W. Hartmann, R.-D. Herzberg, F. P. Heβberger, D. Hild A. H ubner, E. J ager, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J. P. Omtvedt, E. Parr, D. Rudolph 8 J. Runke, H. Schaffner, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner Th orle-Pospiech, J. Uusitalo, M. Wegrzecki, and N. Wieh$$o5$$sPhys.Rev.,C83,054618$$y2011
000061825 999C5 $$hS. Hofmann, S. Heinz, R. Mann, J. Maurer, J. Khuyagbaatar, D. Ackermann, S. Antalic, W. Barth, M. Block, H.G. Burkhard, V.F. Comas, L. Dahl, K. Eberhardt, J. Gostic, R.A. Henderson, J.A. Heredia, F.P. Heβberger, J.M. Kenneally, B. Kindler, I. Kojouharov, J.V. Kratz, R. Lang, M. Leino, B. Lommel, K.J. Moody$$mG. M unzenberg, S.L. Nelson, K. Nishio, A.G. Popeko, J. Runke, S. Saro, D.A. Shaughnessy, M.A. Stoyer, P. Th orle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, P.A. Wilk, and A.V. Yeremin$$o6$$sEur.Phys.J.,A48,62$$y2012
000061825 999C5 $$hG. Giardina, S. Hofmann, A. I. Muminov, A. K. Nasirov$$o7$$sEur.Phys.J.,A8,205$$y2000
000061825 999C5 $$hG. Fazio, G. Giardina, G. Mandaglio, F. Hanappe, A. I. Muminov, A. K. Nasirov, W. Scheid, L. Stuttgé$$o8$$sMod.Phys.Lett.,A20,391$$y2005
000061825 999C5 $$0226403$$hB. B. Back, R. R. Betts, J. E. Gindler, B. D. Wilkins, and S. Saini$$mM. B. Tsang, C. K. Gelbke, and W. G. Lynch M. A. McMahan, and P. A. Baisden$$o9$$sPhys.Rev.,C32,195$$y1985
000061825 999C5 $$hN. V. Antonenko, E. A. Cherepanov, A. K. Nasirov, V. P. Permjakov, V. V. Volkov$$o10$$sPhys.Lett.,B319,425$$y1993
000061825 999C5 $$0399742$$o10$$sPhys.Rev.,C51,2635$$y1995
000061825 999C5 $$0627984$$hG.G. Adamian, N.V. Antonenko, W. Scheid$$o11$$sPhys.Rev.,C68,034601$$y2003
000061825 999C5 $$hG. Fazio, G. Giardina, A. Lamberto, R. Ruggeri, C. Saccà, R. Palamara, A. I. Muminov, A. K. Nasirov, U. T. Yakhshiev, F. Hanappe$$o12$$sEur.Phys.J.,A19,89$$y2004
000061825 999C5 $$0806058$$hA. K. Nasirov, G. Giardina, G. Mandaglio, and M. Manganaro$$mF. Hanappe, S. Heinz and S. Hofmann A. I. Muminov, W. Scheid$$o13$$sPhys.Rev.,C79,024606$$y2009
000061825 999C5 $$0225879$$mPeter Armbruster$$o14$$sAnn.Rev.Nucl.Part.Sci.,35,135$$y1985
000061825 999C5 $$hA. Sobiczewski, K. Pomorski$$o15$$sProg.Part.Nucl.Phys.,58,292$$y2007
000061825 999C5 $$0244083$$hA.J. Sierk$$m:$$o16$$sPhys.Rev.,C33,2039$$y1986
000061825 999C5 $$01206353$$hG. Mandaglio, G. Giardina, A. K. Nasirov, and A. Sobiczewski$$o17$$sPhys.Rev.,C86,064607$$y2012
000061825 999C5 $$mAvazbek Nasirov, Akira Fukushima, Yuka Toyoshima, Yoshihiro Aritomo, Akhtam Muminov, Shuhrat Kalandarov, Ravshanbek Utamuratov$$o18$$sNucl.Phys.,A759,342$$y2005
000061825 999C5 $$hG. Audi, A.H. Wapstra$$o19$$sNucl.Phys.,A595,509$$y1995
000061825 999C5 $$hP. Möller and J.R. Nix$$o20$$sJ.Phys.,G20,1681$$y1994
000061825 999C5 $$0176285$$hH. Esbensen$$m:$$o21$$sNucl.Phys.,A352,147$$y1981
000061825 999C5 $$0258222$$hS. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor$$mJr., and P.H. Stelson:$$o22$$sAtom.Data Nucl.Data Tabl.,36,1$$y1987
000061825 999C5 $$0294247$$hR. H. Spear$$m:$$o23$$sAtom.Data Nucl.Data Tabl.,42,55$$y1989
000061825 999C5 $$0750923$$hA. K. Nasirov, A. I. Muminov, R. K. Utamuratov, G. Fazio, G. Giardina, F. Hanappe, G. Mandaglio, M. Manganaro, and W. Scheid$$m:$$o24$$sEur.Phys.J.,A34,325$$y2007
000061825 999C5 $$hG. Giardina, A K Nasirov, G Mandaglio, F Curciarello, V De Leo, G Fazio, M Manganaro, M Romaniuk, C Saccá$$mJour. of Physics: Conference Series 282, 012006 (2011)$$o25
000061825 999C5 $$hI. Muntian, Z. Patyk, and A. Sobiczewski$$o26$$sPhys.Atom.Nucl.,66,1015$$y2003
000061825 999C5 $$0862724$$hM. Kowal, P. Jachimowicz, and A. Sobiczewski$$o27$$sPhys.Rev.,C82,014303$$y2010
000061825 999C5 $$hM. Kowal and A. Sobiczewski$$o28$$sInt.J.Mod.Phys.,E18,914$$y2009
000061825 999C5 $$0701754$$hG. Fazio, G. Giardina, G. Mandaglio, R. Ruggeri, A. I. Muminov, A. K. Nasirov$$mYu. Ts. Oganessian, A. G. Popeko, R. N. Sagaidak, A. V. Yeremin, S. Hofmann, F. Hanappe, C Stodel$$o29$$sPhys.Rev.,C72,064614$$y2005
000061825 999C5 $$hD.J. Hinde, M. Dasgupta, J.R. Leigh, J.P. Lestone, J.C.Mein, C.R.Morton, J.O. Newton, H. Timmers$$o30$$sPhys.Rev.Lett.,74,1295$$y1995
000061825 999C5 $$0351653$$hA. D’Arrigo, G. Giardina, M. Herman, and A. Taccone$$o31$$sPhys.Rev.,C46,1437$$y1992
000061825 999C5 $$hR. N. Sagaidak, V. I. Chepigin, A. P. Kabachenko, J. Rohac$$mYu. Ts. Oganessian, A. G. Popeko, A. A. Yeremin, A. D’Arrigo, G. Fazio, G. Giardina, M. Herman, R Ruggeri, and R. Sturiale$$o32$$sJ.Phys.,G24,611$$y1998
000061825 999C6 $$a0-0-1-2-0-0-0$$t2013-08-08 08:14:06$$vInvenio/1.0.0.1712-3d18 refextract/1.5.36