000060457 001__ 60457
000060457 005__ 20140130012517.0
000060457 035__ $$9INSPIRETeX$$aMchedlishvili:2013bja
000060457 035__ $$9arXiv$$aoai:arXiv.org:1305.5475
000060457 037__ $$9arXiv$$aarXiv:1305.5475$$cnucl-ex
000060457 100__ $$aMchedlishvili, D.$$uJulich, Forschungszentrum$$uTbilisi State U.
000060457 245__ $$9arXiv$$aExcitation of the Delta(1232) isobar in deuteron charge exchange on hydrogen at 1.6, 1.8, and 2.3 GeV
000060457 246__ $$9arXiv$$aExcitation of the Delta(1232) isobar in deuteron charge exchange on hydrogen at 1.6, 1.8, and 2.3 GeV
000060457 269__ $$c2013-05-23
000060457 300__ $$a7
000060457 500__ $$a*Brief entry*
000060457 500__ $$9arXiv$$a7 pages with 6 figures
000060457 520__ $$9arXiv$$aThe charge-exchange break-up of polarised deuterons pol{d}p -> {pp}n, where the final {pp} diproton system has a very low excitation energy and hence is mainly in the 1S0 state, is a powerful tool to probe the spin-flip terms in the proton-neutron charge-exchange scattering. Recent measurements with the ANKE spectrometer at the COSY storage ring at 1.6, 1.8, and 2.27 GeV have extended these studies into the pion-production regime in order to investigate the mechanism for the excitation of the Delta(1232) isobar in the pol{d}p -> {pp}X reaction. Values of the differential cross section and two deuteron tensor analysing powers, A_{xx} and A_{yy}, have been extracted in terms of the momentum transfer to the diproton or the invariant mass Mx of the unobserved system X. The unpolarised cross section in the high Mx region is well described in a model that includes only direct excitation of the Delta isobar through undistorted one pion exchange. However, the cross section is grossly underestimated for low Mx, even when Delta excitation in the projectile deuteron is included in the calculation. Furthermore, direct Delta production through one pion exchange only reproduces the angular dependence of the difference between the two tensor analysing powers.
000060457 540__ $$ahttp://arxiv.org/licenses/nonexclusive-distrib/1.0/$$barXiv
000060457 65017 $$2arXiv$$anucl-ex
000060457 65017 $$2INSPIRE$$aExperiment-Nucl
000060457 65017 $$2arXiv$$anucl-th
000060457 65017 $$2INSPIRE$$aTheory-Nucl
000060457 700__ $$aBarsov, S.$$uSt. Petersburg, INP
000060457 700__ $$aCarbonell, J.$$uOrsay, IPN
000060457 700__ $$aChiladze, D.$$uJulich, Forschungszentrum$$uTbilisi State U.
000060457 700__ $$aDymov, S.$$uErlangen - Nuremberg U.$$uDubna, JINR
000060457 700__ $$aDzyuba, A.$$uSt. Petersburg, INP
000060457 700__ $$aEngels, R.$$uJulich, Forschungszentrum
000060457 700__ $$aGebel, R.$$uJulich, Forschungszentrum
000060457 700__ $$aGlagolev, V.$$uDubna, JINR
000060457 700__ $$aGrigoryev, K.$$uSt. Petersburg, INP$$uJulich, Forschungszentrum
000060457 700__ $$aGoslawski, P.$$uMunster U.
000060457 700__ $$aHartmann, M.$$uJulich, Forschungszentrum
000060457 700__ $$aImambekov, O.$$uDubna, JINR
000060457 700__ $$aKacharava, A.$$uJulich, Forschungszentrum
000060457 700__ $$aKamerdzhiev, V.$$uJulich, Forschungszentrum
000060457 700__ $$aKeshelashvili, I.$$uBasel U.$$uTbilisi State U.
000060457 700__ $$aKhoukaz, A.$$uMunster U.
000060457 700__ $$aKomarov, V.$$uDubna, JINR
000060457 700__ $$aKulessa, P.$$uCracow, INP
000060457 700__ $$aKulikov, A.$$uDubna, JINR
000060457 700__ $$aLehrach, A.$$uJulich, Forschungszentrum
000060457 700__ $$aLomidze, N.$$uTbilisi State U.
000060457 700__ $$aLorentz, B.$$uJulich, Forschungszentrum
000060457 700__ $$aMacharashvili, G.$$uDubna, JINR$$uTbilisi State U.
000060457 700__ $$aMaier, R.$$uJulich, Forschungszentrum
000060457 700__ $$aMerzliakov, S.$$uDubna, JINR$$uJulich, Forschungszentrum
000060457 700__ $$aMielke, M.$$uMunster U.
000060457 700__ $$aMikirtychyants, M.$$uSt. Petersburg, INP$$uJulich, Forschungszentrum
000060457 700__ $$aMikirtychyants, S.$$uSt. Petersburg, INP$$uJulich, Forschungszentrum
000060457 700__ $$aNioradze, M.$$uTbilisi State U.
000060457 700__ $$aOhm, H.$$uJulich, Forschungszentrum
000060457 700__ $$aPapenbrock, M.$$uMunster U.
000060457 700__ $$aPrasuhn, D.$$uJulich, Forschungszentrum
000060457 700__ $$aRathmann, F.$$uJulich, Forschungszentrum
000060457 700__ $$aSerdyuk, V.$$uJulich, Forschungszentrum
000060457 700__ $$aSeyfarth, H.$$uJulich, Forschungszentrum
000060457 700__ $$aStein, H.J.$$uJulich, Forschungszentrum
000060457 700__ $$aSteffens, E.$$uErlangen - Nuremberg U.
000060457 700__ $$aStockhorst, H.$$uJulich, Forschungszentrum
000060457 700__ $$aStroher, H.$$uJulich, Forschungszentrum
000060457 700__ $$aTabidze, M.$$uTbilisi State U.
000060457 700__ $$aTrusov, S.$$uForschungszentrum Dresden Rossendorf
000060457 700__ $$aUzikov, Yu.$$uMoscow State U.$$uDubna, JINR
000060457 700__ $$aValdau, Yu.$$uSt. Petersburg, INP$$uJulich, Forschungszentrum
000060457 700__ $$aWilkin, C.$$uUniversity Coll. London
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/arXiv%3A1305.5475.pdf
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/Fig1a.png$$y00000 The one-pion-exchange contribution to $\Delta(1232)$ production in the deuteron charge-exchange break-up reaction. (a) The direct (D) term. (b) The exchange (E) term.
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/Fig1b.png$$y00001 The one-pion-exchange contribution to $\Delta(1232)$ production in the deuteron charge-exchange break-up reaction. (a) The direct (D) term. (b) The exchange (E) term.
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/Fig2.png$$y00002 Experimental (red dots) and simulated $E_{pp}$ distributions, summed over all three beam energies. The simulation of the $S$-wave contribution (magenta stars) includes a Migdal-Watson factor~\cite{WAT1952,MIG1953}. The fitted value of the non-interacting $P$-wave (green squares) corresponds to a total contribution of 15\% over this $E_{pp}$ range. The overall simulation is shown by blue triangles.
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/Fig3.png$$y00003 Unpolarised differential cross section for the $\dpceX$ reaction with $E_{pp}<3$~MeV for $M_X>M_N+M_{\pi}$ at three deuteron beam energies. The data are summed over the interval $0 < \theta_{\rm lab} < 3^{\circ}$ in the diproton laboratory polar angle. Only statistical errors are shown; the overall normalisation uncertainties are less than 7\%. The solid (red) curves correspond to the one-pion-exchange predictions for the direct mechanism of Fig.~\ref{diag_delta}a. The dashed (blue) lines show the contribution of the exchange mechanism (E) of Fig.~\ref{diag_delta}b.
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/Fig4.png$$y00004 The sum and difference of the Cartesian tensor analysing powers for the \dpcepolX\ reaction with $E_{pp}<3$~MeV at three different beam energies. The data are corrected for the detector acceptance and summed over the range $0^{\circ} < \theta_{\rm lab} < 3^{\circ}$ in diproton laboratory polar angle. Though the error bars are dominantly statistical, they include also the uncertainties from the beam polarisation and relative luminosity $C_n$. In addition, there is an overall uncertainty of up to 4\% due to the use of the polarisation export technique~\cite{spin2010}.
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/Fig5.png$$y00005 Acceptance-corrected tensor analysing powers $A_{xx}$ and $A_{yy}$ of the \dpcepolX\ reaction with $E_{pp}<3$~MeV at three deuteron beam energies as a function of the transverse momentum transfer $q_t$. Only high mass data ($1.19<M_X<1.35$~GeV/$c^2$) are considered. Note that in the forward direction, $q_t=0$ and $A_{xx}=A_{yy}$. Though the error bars are dominantly statistical, they include also the uncertainties from the beam polarisation and relative luminosity $C_n$. In addition, there is an overall uncertainty of up to 4\% due to the use of the polarisation export technique. The one-pion-exchange predictions are shown by the blue dashed line for $A_{yy}$ and red solid for $A_{xx}$.
000060457 8564_ $$uhttp://inspirehep.net/record/1235306/files/Fig6.png$$y00006 Spherical tensor analysing power $T_{22}=(A_{xx}-A_{yy})/2\sqrt{3}$ for the \dpcepolX\ reaction with $E_{pp}<3$~MeV, averaged over the three beam energies studied. Though the error bars are dominantly statistical, they include also the uncertainties from the beam polarisation and relative luminosity $C_n$. In addition, there is an overall uncertainty of up to 4\% due to the use of the polarisation export technique. When the same approach is applied to the predictions of the simple one-pion-exchange model of Fig.~\ref{diag_delta}a, the good agreement shown by the curve is achieved.
000060457 909CO $$ooai:jdsweb.jinr.ru:60457$$pglobal
000060457 980__ $$aarXiv
000060457 980__ $$aCiteable
000060457 980__ $$aHEP
000060457 999C5 $$hI. Ya$$mPomeranchuk$$o1$$sDokl.Akad.Nauk Ser.Fiz.,78,249$$y1951
000060457 999C5 $$0786296$$hF. Lehar and C. Wilkin$$o2$$sEur.Phys.J.,A37,143$$y2008
000060457 999C5 $$hF. Lehar and C. Wilkin$$o2
000060457 999C5 $$0836458$$o2$$sPhys.Part.Nucl.Lett.,7,235$$y2010
000060457 999C5 $$0253312$$hD. V. Bugg and C. Wilkin$$o3$$sNucl.Phys.,A467,575$$y1987
000060457 999C5 $$0323735$$hJ. Carbonell, M. B. Barbaro, and C. Wilkin$$o4$$sNucl.Phys.,A529,653$$y1991
000060457 999C5 $$01206914$$hD. Mchedlishvili et al.$$o5$$sEur.Phys.J.,A49,49$$y2013
000060457 999C5 $$0254109$$hC. Ellegaard et al.$$o6$$sPhys.Rev.Lett.,59,974$$y1987
000060457 999C5 $$0287782$$hC. Ellegaard et al.$$o7$$sPhys.Lett.,B231,365$$y1989
000060457 999C5 $$hT. Sams$$mPhD thesis, Nils Bohr Institute Copenhagen (1991)$$o8
000060457 999C5 $$mhttp//www.physics.dk/Sams1990.pdf$$o8
000060457 999C5 $$0239629$$hV. Dmitriev, O. Sushkov, and C. Gaarde$$o9$$sNucl.Phys.,A459,503$$y1986
000060457 999C5 $$0458371$$hR. Maier et al.$$o10$$sNucl.Instrum.Meth.,A390,1$$y1997
000060457 999C5 $$hA. Khoukaz et al.$$o11$$sEur.Phys.J.,D5,275$$y1999
000060457 999C5 $$0560204$$hS. Barsov et al.$$o12$$sNucl.Instrum.Meth.,A462,364$$y2001
000060457 999C5 $$hD. Mchedlishvili and D. Chiladze$$mJ. Phys.: Conf. Ser. 295 (2011) 012099$$o13
000060457 999C5 $$0218742$$hC. Ellegaard et al.$$o14$$sPhys.Lett.,B154,110$$y1985
000060457 999C5 $$035351$$hR. A. Arndt, I. I. Strakovsky, R. L. Workman, and D. V. Bugg$$o15$$sPhys.Rev.,C48,1926$$y1993
000060457 999C5 $$o15$$uhttp://gwdac.phys.gwu.edu
000060457 999C5 $$09143$$hK. M. Watson$$o16$$sPhys.Rev.,88,1163$$y1952
000060457 999C5 $$hA. B. Migdal$$o17$$sZh.Eksp.Teor.Fiz.,28,3$$y1953
000060457 999C5 $$054212$$hB. J. Morton et al.$$o18$$sPhys.Rev.,169,825$$y1968
000060457 999C5 $$0528472$$hR. Machleidt$$o19$$sPhys.Rev.,C63,024001$$y2000
000060457 999C5 $$hO. Imambekov$$mand Yu. N. Uzikov$$o20$$sYad.Fiz.,44,1089$$y1988
000060457 999C5 $$084771$$hJ. Banaigs et al.$$o21$$sPhys.Lett.,B45,535$$y1973
000060457 999C5 $$0341387$$hH. P. Morsch et al.$$o22$$sPhys.Rev.Lett.,69,1336$$y1992
000060457 999C5 $$0180405$$hR. Baldini Celio et al.$$o23$$sNucl.Phys.,A379,477$$y1982
000060457 999C5 $$036331$$hP. Fernández de Córdoba et al.$$o24$$sNucl.Phys.,A586,586$$y1995
000060457 999C5 $$hUzikov, J.$$mYu Haidenbauer, and C. Wilkin, The charge-exchange reaction dp → {pp}sNπ in the ∆-isobar region. ANKE internal report #97 (2012), available from http//www.collaborations.fz-juelich.de/ikp/anke$$o25
000060457 999C5 $$0699217$$hD. Chiladze et al.$$o26$$sPhys.Rev.ST Accel.Beams,9,050101$$y2006
000060457 999C5 $$hA. Kacharava et al.$$mCOSY proposal #172 (2007)$$o27
000060457 999C5 $$hD. Mchedlishvili, S. Barsov, and C. Wilkin$$mCOSY proposal #218 (2013), available from http//www.collaborations.fz-juelich.de/ikp/anke$$o28
000060457 999C5 $$0639323$$hR. Schleichert et al.$$o29$$sIEEE Trans.Nucl.Sci.,50,301$$y2003
000060457 999C5 $$hH. Garcilazo and T. Mizutani$$mπNN Systems Singapore, 1990$$o30$$pWorld Scientific
000060457 999C6 $$a0-0-0-1-0-0-1$$t2013-05-24 06:57:18$$vInvenio/1.0.0.1712-3d18 refextract/1.5.35