000056220 001__ 56220
000056220 005__ 20140130005542.0
000056220 037__ $$9arXiv$$aarXiv:1108.6300$$chep-ph
000056220 035__ $$9arXiv$$aoai:arXiv.org:1108.6300$$zoai:arXiv.org:1108.6300
000056220 035__ $$9SPIRESTeX$$zBakulev:2011fk
000056220 100__ $$aBakulev, Alexander P.$$uDubna, JINR
000056220 245__ $$aResummation Approach in QCD Analytic Perturbation Theory
000056220 246__ $$9arXiv$$aResummation Approach in QCD Analytic Perturbation Theory
000056220 269__ $$c2011-08
000056220 300__ $$a8
000056220 520__ $$9arXiv$$aWe discuss the resummation approach in QCD Analytic Perturbation Theory (APT). We start with a simple example of asymptotic power series for a zero-dimensional analog of the scalar $g\,\phi^4$ model. Then we give a short historic preamble of APT and show that renormgroup improvement of the QCD perturbation theory dictates to use the Fractional APT (FAPT). After that we discuss the (F)APT resummation of nonpower series and provide the one-, two-, and three-loop resummation recipes. We show the results of applications of these recipes to the estimation of the Adler function $D(Q^2)$ in the $N_f=4$ region of $Q^2$ and of the Higgs-boson-decay width $\Gamma_{H\to b\bar{b}}(m_H^2)$ for $M_H=100-180$ GeV$^2$.
000056220 65017 $$2INSPIRE$$aMath and Math Physics
000056220 65017 $$2INSPIRE$$aPhenomenology-HEP
000056220 65017 $$2INSPIRE$$aTheory-HEP
000056220 6531_ $$9author$$aRenormalization group
000056220 6531_ $$9author$$aQCD
000056220 6531_ $$9author$$aAnalytic Perturbation Theory
000056220 6531_ $$9author$$aNonpower Series Resummation
000056220 6531_ $$9author$$aAdler function
000056220 6531_ $$9author$$aHiggs boson decay
000056220 690C_ $$2INSPIRE$$aConference Paper
000056220 695__ $$2INSPIRE$$atalk
000056220 695__ $$2INSPIRE$$aquantum chromodynamics: perturbation theory
000056220 695__ $$2INSPIRE$$aphi**n model: 4
000056220 695__ $$2INSPIRE$$aresummation
000056220 695__ $$2INSPIRE$$afractional
000056220 700__ $$aPotapova, Irina V.$$uDubna, JINR
000056220 773__ $$tTo appear in the proceedings of$$wC11/06/27.4
000056220 8564_ $$uhttp://inspirehep.net/record/925949/files/arXiv:1108.6300.pdf
000056220 909CO $$ooai:jdsweb.jinr.ru:56220$$pglobal
000056220 961__ $$x2011-08-31
000056220 961__ $$c2011-10-05
000056220 970__ $$aSPIRES-9182756
000056220 980__ $$aarXiv
000056220 980__ $$aCiteable
000056220 980__ $$aCORE
000056220 999C5 $$sFortsch.Phys.,28,465
000056220 999C5 $$sSov.Phys.JETP,45,216
000056220 999C5 $$rarXiv:1102.2380
000056220 999C5 $$sSov.Phys.JETP,10,574
000056220 999C5 $$rhep-ph/9907228$$sJINR Rapid Commun.,78,96
000056220 999C5 $$sPhys.Lett.,B116,168
000056220 999C5 $$rhep-ph/9501344$$sPhys.Lett.,B349,519
000056220 999C5 $$rhep-ph/9604363
000056220 999C5 $$rhep-ph/9704333$$sPhys.Rev.Lett.,79,1209
000056220 999C5 $$rhep-ph/0611229$$sTheor.Math.Phys.,150,132
000056220 999C5 $$rarXiv:0911.3297$$sPhys.Rev.,D81,016010
000056220 999C5 $$rhep-ph/0101031$$sPhys.Lett.,B504,225
000056220 999C5 $$rhep-ph/9807298$$sPhys.Lett.,B449,299
000056220 999C5 $$rhep-ph/0005218$$sEur.Phys.J.,C18,137
000056220 999C5 $$rhep-ph/0506311$$sPhys.Rev.,D72,074014
000056220 999C5 $$rhep-ph/0607040$$sPhys.Rev.,D75,056005
000056220 999C5 $$rhep-ph/0504275$$sPhys.Rev.,D72,074015
000056220 999C5 $$rarXiv:0805.0829$$sPhys.Part.Nucl.,40,715
000056220 999C5 $$rarXiv:0902.4805
000056220 999C5 $$rhep-ph/0411397$$sJHEP,0706,009
000056220 999C5 $$rarXiv:1004.4125$$sJHEP,1006,085
000056220 999C5 $$rarXiv:0801.1821$$sPhys.Rev.Lett.,101,012002
000056220 999C5 $$rarXiv:1001.3606$$sPhys.Rev.Lett.,104,132004
000056220 999C5 $$rarXiv:1107.2902
000056220 999C5 $$rhep-ph/0511063$$sPhys.Rev.Lett.,96,012003
000056220 999C5 $$rhep-ph/9502348$$sMod.Phys.Lett.,A10,235
000056220 999C5 $$rhep-ph/9703226$$sPhys.Lett.,B402,359
000056220 999C5 $$rhep-ph/0204290$$sPhys.Lett.,B538,335
000056220 999C5 $$rhep-ph/0109084$$sNucl.Phys.,B619,588
000056220 999C5 $$rarXiv:0803.3013
000056220 999C5 $$rarXiv:0902.1442$$sPoS,ACAT08,004
000056220 999C5 $$sNOONE,Y1,2008
000056220 999C5 $$sNOONE,NNL,004