000028202 001__ 28202
000028202 005__ 20140130015843.0
000028202 037__ $$9arXiv$$anucl-th/0608057$$cnucl-th
000028202 035__ $$9arXiv$$zoai:arXiv.org:nucl-th/0608057
000028202 035__ $$9DESY$$zD06-14001
000028202 035__ $$9SPIRESTeX$$zAmelin:2006qe
000028202 100__ $$aAmelin, N.S.$$uDubna, JINR
000028202 210__ $$aFREEZE OUT
000028202 245__ $$aA Fast hadron freeze-out generator
000028202 246__ $$9arXiv$$aA Fast Hadron Freeze-out Generator
000028202 269__ $$c2006-08
000028202 300__ $$a28
000028202 520__ $$9arXiv$$aWe have developed a fast Monte Carlo procedure of hadron generation allowing one to study and analyze various observables for stable hadrons and hadron resonances produced in ultra-relativistic heavy ion collisions. Particle multiplicities are determined based on the concept of chemical freeze-out. Particles can be generated on the chemical or thermal freeze-out hypersurface represented by a parameterization or a numerical solution of relativistic hydrodynamics with given initial conditions and equation of state. Besides standard space-like sectors associated with the volume decay, the hypersurface may also include non-space-like sectors related to the emission from the surface of expanding system. For comparison with other models and experimental data we demonstrate the results based on the standard parameterizations of the hadron freeze-out hypersurface and flow velocity profile under the assumption of a common chemical and thermal freeze-out. The C++ generator code is written under the ROOT framework and is available for public use at http://uhkm.jinr.ru/.
000028202 65017 $$2INSPIRE$$aTheory-Nucl
000028202 65017 $$2PACS$$a25.75.Dw
000028202 65017 $$2PACS$$a24.10.Lx
000028202 65017 $$2PACS$$a25.75.Gz
000028202 690C_ $$2INSPIRE$$aPublished
000028202 695__ $$2INSPIRE$$ascattering: heavy ion
000028202 695__ $$2INSPIRE$$agold
000028202 695__ $$2INSPIRE$$ahadron: multiple production
000028202 695__ $$2INSPIRE$$ahydrodynamics
000028202 695__ $$2INSPIRE$$afireball
000028202 695__ $$2INSPIRE$$ahadron: gas
000028202 695__ $$2INSPIRE$$afreeze-out
000028202 695__ $$2INSPIRE$$aparametrization
000028202 695__ $$2INSPIRE$$ahadron: momentum spectrum
000028202 695__ $$2INSPIRE$$ahadron: multiplicity
000028202 695__ $$2INSPIRE$$ahadron: formation
000028202 695__ $$2INSPIRE$$ayield: ratio
000028202 695__ $$2INSPIRE$$arapidity spectrum
000028202 695__ $$2INSPIRE$$atransverse momentum: spectrum
000028202 695__ $$2INSPIRE$$acorrelation function
000028202 695__ $$2INSPIRE$$aprogramming: Monte Carlo
000028202 695__ $$2INSPIRE$$anumerical calculations: Monte Carlo
000028202 695__ $$2INSPIRE$$ainterpretation of experiments: Brookhaven RHIC Coll
000028202 695__ $$2INSPIRE$$a200 GeV-cms/nucleon
000028202 700__ $$aLednicky, R.$$uDubna, JINR
000028202 700__ $$aPocheptsov, T.A.$$uDubna, JINR
000028202 700__ $$aLokhtin, I.P.$$uSINP, Moscow
000028202 700__ $$aMalinina, L.V.$$uSINP, Moscow
000028202 700__ $$aSnigirev, A.M.$$uSINP, Moscow
000028202 700__ $$aKarpenko, Iu.A.$$uBITP, Kiev
000028202 700__ $$aSinyukov, Yu.M.$$uBITP, Kiev
000028202 773__ $$a10.1103/PhysRevC.74.064901$$c064901$$pPhys.Rev.$$vC74$$y2006
000028202 8564_ $$uhttp://link.aps.org/abstract/PRC/V74/E064901$$wV74/E064901$$yPHRVA-C
000028202 909CO $$ooai:jdsweb.jinr.ru:28202$$pglobal
000028202 961__ $$x2006-08-27
000028202 961__ $$c2008-11-26
000028202 970__ $$aSPIRES-6886612
000028202 980__ $$aPublished
000028202 980__ $$aArxiv
000028202 980__ $$aCiteable
000028202 980__ $$aCORE
000028202 999C5 $$sZ.Phys.,C76,99
000028202 999C5 $$rhep-ph/0312204
000028202 999C5 $$rhep-ph/0506189$$sEur.Phys.J.,C45,211
000028202 999C5 $$sNucl.Instrum.Meth.,A389,81
000028202 999C5 $$rnucl-th/0312024$$sPhys.Rev.,C70,044907
000028202 999C5 $$sActa Phys.Polon.,35,2855
000028202 999C5 $$rnucl-th/0504047$$sComput.Phys.Commun.,174,669
000028202 999C5 $$sNukleonika,43,369
000028202 999C5 $$rnucl-th/0111050$$sNucl.Phys.,A710,439
000028202 999C5 $$sPhys.Rev.,C70,064901
000028202 999C5 $$rnucl-th/0505045$$sPhys.Rev.,C73,034908
000028202 999C5 $$rhep-ph/0511094$$sPhys.Rev.,C73,034905
000028202 999C5 $$sPhys.Rev.,D10,186
000028202 999C5 $$sPhys.Lett.,B142,425
000028202 999C5 $$sZ.Phys.,C43,401
000028202 999C5 $$rnucl-th/9906047$$sNucl.Phys.,A606,559
000028202 999C5 $$rnucl-th/9806004$$sPhys.Rev.,C59,3309
000028202 999C5 $$rnucl-th/0507057$$sPhys.Rev.,C73,024903
000028202 999C5 $$sPhys.Rev.,D27,140
000028202 999C5 $$rnucl-th/9906037$$sPhys.Rev.,C61,034904
000028202 999C5 $$rhep-ph/9509213$$sPhys.Rev.,C54,1390
000028202 999C5 $$sPhys.Rev.,C34,1340
000028202 999C5 $$sPhys.Rev.,D66,010001
000028202 999C5 $$rnucl-th/0507040$$sPhys.Rev.,C73,044909
000028202 999C5 $$rnucl-th/9307020$$sPhys.Rev.,C48,2462
000028202 999C5 $$rnucl-th/9711062$$sPhys.Rev.,C56,2210
000028202 999C5 $$sPhys.Lett.,B262,333
000028202 999C5 $$rhep-ph/0511092$$sPhys.Rev.,C73,044905
000028202 999C5 $$rnucl-th/9901094$$sPhys.Rept.,319,145
000028202 999C5 $$rhep-ph/0407174$$sComput.Phys.Commun.,180,84
000028202 999C5 $$rnucl-th/9410026$$sPhys.Lett.,B344,43
000028202 999C5 $$rnucl-th/9508020$$sPhys.Lett.,B365,1
000028202 999C5 $$rnucl-th/9903010$$sPhys.Lett.,B465,15
000028202 999C5 $$rnucl-th/0212052$$sAIP Conf.Proc.,660,177
000028202 999C5 $$rhep-ex/0104032$$sPhys.Rev.Lett.,87,102301
000028202 999C5 $$sNucl.Phys.,A698,667
000028202 999C5 $$sNucl.Phys.,A698,64
000028202 999C5 $$sNucl.Phys.,A698,659
000028202 999C5 $$sNucl.Phys.,A698,112
000028202 999C5 $$rnucl-ex/0211024$$sPhys.Lett.,B567,167
000028202 999C5 $$sPhys.Rev.,C65,041901
000028202 999C5 $$rnucl-ex/0203016$$sPhys.Rev.Lett.,89,092301
000028202 999C5 $$rnucl-ex/0110009$$sPhys.Rev.Lett.,87,262302
000028202 999C5 $$rnucl-ex/0210032$$sNucl.Phys.,A715,518
000028202 999C5 $$rnucl-ex/0410022$$sNucl.Phys.,A757,28
000028202 999C5 $$rnucl-ex/0307022$$sPhys.Rev.,C69,034909
000028202 999C5 $$rnucl-th/0510020$$sNucl.Phys.,A774,189
000028202 999C5 $$sSov.J.Nucl.Phys.,37,272
000028202 999C5 $$sPhys.Rev.Lett.,53,1219
000028202 999C5 $$rnucl-ex/0411036$$sPhys.Rev.,C71,044906
000028202 999C5 $$rnucl-ex/0511053$$sAIP Conf.Proc.,828,533