/ General Physics nlin/0506041


Fermionic one- and two-dimensional Toda lattice hierarchies and their bi-Hamiltonian structures


Gribanov, V.V. (Dubna, JINR) ; Kadyshevsky, V.G. (Dubna, JINR) ; Sorin, Alexander Savelievich (Dubna, JINR)

Published in: Nucl.Phys.
Year: 2005
Vol.: B727
Page No: 564-586
Pages: 26

Abstract: By exhibiting the corresponding Lax pair representations we propose a wide class of integrable two-dimensional (2D) fermionic Toda lattice (TL) hierarchies which includes the 2D N=(2|2) and N=(0|2) supersymmetric TL hierarchies as particular cases. Performing their reduction to the one-dimensional case by imposing suitable constraints we derive the corresponding 1D fermionic TL hierarchies. We develop the generalized graded R-matrix formalism using the generalized graded bracket on the space of graded operators with an involution generalizing the graded commutator in superalgebras, which allows one to describe these hierarchies in the framework of the Hamiltonian formalism and construct their first two Hamiltonian structures. The first Hamiltonian structure is obtained for both bosonic and fermionic Lax operators while the second Hamiltonian structure is established for bosonic Lax operators only. We propose the graded modified Yang-Baxter equation in the operator form and demonstrate that for the class of graded antisymmetric R-matrices it is equivalent to the tensor form of the graded classical Yang-Baxter equation.

Keyword(s): Completely integrable systems ; Toda field theory ; Supersymmetry ; Discrete symmetries ; R-matrix


Note: The extended version of nlin.si/0505039

Total numbers of views: 649
Numbers of unique views: 324
e-proceeding
 Record created 2010-10-28, last modified 2014-01-30



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)